Abstract
We propose in this work a computational criterion to test if a free divisor {\small $D\subset {\bf C}^n$} verifies the Logarithmic Comparison Theorem (LCT); that is, whether the complex of logarithmic differential forms computes the cohomology of the complement of {\small $D$} in {\small ${\bf C}^n$}.
For Spencer free divisors {\small $D\equiv(f=0)$}, we solve a conjecture about the generators of the annihilating ideal of {\small $1/f$} and make a conjecture on the nature of Euler homogeneous free divisors which verify LCT. In addition, we provide examples of free divisors defined by weighted homogeneous polynomials that are not locally quasi-homogeneous.
Citation
F. J. Castro-Jiménez. J. M. Ucha-Enríquez. "Testing the Logarithmic Comparison Theorem for Free Divisors." Experiment. Math. 13 (4) 441 - 449, 2004.
Information