Abstract
In a well-known paper, Cohen and Lenstra gave conjectures on class groups of number fields. We give here similar conjectures for Tate-Shafarevitch groups of elliptic curves defined over ℚ. For such groups (if they are finite), there exists a nondegenerate, alternating, bilinear pairing. We give some properties of such groups and then formulate heuristics which allow us to give precise conjectures.
Citation
Christophe Delaunay. "Heuristics on Tate-Shafarevitch Groups of Elliptic Curves Defined over ℚ." Experiment. Math. 10 (2) 191 - 196, 2001.
Information