Open Access
2015 Adaptive Laguerre density estimation for mixed Poisson models
Fabienne Comte, Valentine Genon-Catalot
Electron. J. Statist. 9(1): 1113-1149 (2015). DOI: 10.1214/15-EJS1028

Abstract

In this paper, we consider the observation of $n$ i.i.d. mixed Poisson processes with random intensity having an unknown density $f$ on $\mathbb{R}^{+}$. For fixed observation time $T$, we propose a nonparametric adaptive strategy to estimate $f$. We use an appropriate Laguerre basis to build adaptive projection estimators. Non-asymptotic upper bounds of the $\mathbb{L}^{2}$-integrated risk are obtained and a lower bound is provided, which proves the optimality of the estimator. For large $T$, the variance of the previous method increases, therefore we propose another adaptive strategy. The procedures are illustrated on simulated data.

Citation

Download Citation

Fabienne Comte. Valentine Genon-Catalot. "Adaptive Laguerre density estimation for mixed Poisson models." Electron. J. Statist. 9 (1) 1113 - 1149, 2015. https://doi.org/10.1214/15-EJS1028

Information

Received: 1 July 2014; Published: 2015
First available in Project Euclid: 27 May 2015

zbMATH: 1328.62228
MathSciNet: MR3352069
Digital Object Identifier: 10.1214/15-EJS1028

Subjects:
Primary: 62G07
Secondary: 62C20

Keywords: adaptive estimators , inverse problem , Laguerre basis , nonparametric estimation , poisson mixture

Rights: Copyright © 2015 The Institute of Mathematical Statistics and the Bernoulli Society

Vol.9 • No. 1 • 2015
Back to Top