Translator Disclaimer
2012 Fixed and random effects selection in nonparametric additive mixed models
Randy C. S. Lai, Hsin-Cheng Huang, Thomas C. M. Lee
Electron. J. Statist. 6(none): 810-842 (2012). DOI: 10.1214/12-EJS695


This paper considers the problem of model selection in a nonparametric additive mixed modeling framework. The fixed effects are modeled nonparametrically using truncated series expansions with B-spline basis. Estimation and selection of such nonparametric fixed effects are simultaneously achieved by using the adaptive group lasso methodology, while the random effects are selected by a traditional backward selection mechanism. To facilitate the automatic selection of model dimension, computable expressions for the degrees of freedom for both the fixed and random effects components are derived, and the Bayesian Information criterion (BIC) is used to select the final model choice. Theoretically it is shown that this BIC model selection method is consistent, while computationally a practical algorithm is developed for solving the optimization problem involved. Simulation results show that the proposed methodology is often capable of selecting the correct significant fixed and random effects components, especially when the sample size and/or signal to noise ratio are not too small. The new method is also applied to two real data sets.


Download Citation

Randy C. S. Lai. Hsin-Cheng Huang. Thomas C. M. Lee. "Fixed and random effects selection in nonparametric additive mixed models." Electron. J. Statist. 6 810 - 842, 2012.


Published: 2012
First available in Project Euclid: 9 May 2012

zbMATH: 1281.62099
MathSciNet: MR2988430
Digital Object Identifier: 10.1214/12-EJS695

Primary: 62G08

Rights: Copyright © 2012 The Institute of Mathematical Statistics and the Bernoulli Society


Back to Top