Open Access
2011 On fixed-domain asymptotics and covariance tapering in Gaussian random field models
Daqing Wang, Wei-Liem Loh
Electron. J. Statist. 5: 238-269 (2011). DOI: 10.1214/11-EJS607
Abstract

Gaussian random fields are commonly used as models for spatial processes and maximum likelihood is a preferred method of choice for estimating the covariance parameters. However if the sample size n is large, evaluating the likelihood can be a numerical challenge. Covariance tapering is a way of approximating the covariance function with a taper (usually a compactly supported function) so that the computational burden is reduced. This article studies the fixed-domain asymptotic behavior of the tapered MLE for the microergodic parameter of a Matérn covariance function when the taper support is allowed to shrink as n. In particular if the dimension of the underlying space is 3, conditions are established in which the tapered MLE is strongly consistent and also asymptotically normal. Numerical experiments are reported that gauge the quality of these approximations for finite n.

References

1.

[1] Anderes, E. (2010). On the consistent separation of scale and variance for Gaussian random fields., Ann. Statist. 38 870–893. 1204.60041 10.1214/09-AOS725 euclid.aos/1266586617[1] Anderes, E. (2010). On the consistent separation of scale and variance for Gaussian random fields., Ann. Statist. 38 870–893. 1204.60041 10.1214/09-AOS725 euclid.aos/1266586617

2.

[2] Andrews, G. E., Askey, R. and Roy, R. (1999)., Special Functions. Cambridge Univ. Press, New York. 0920.33001[2] Andrews, G. E., Askey, R. and Roy, R. (1999)., Special Functions. Cambridge Univ. Press, New York. 0920.33001

3.

[3] Bennett, G. (1962). Probability inequalities for the sum of independent random variables., J. Amer. Statist. Assoc. 57 33–45. 0104.11905 10.1080/01621459.1962.10482149[3] Bennett, G. (1962). Probability inequalities for the sum of independent random variables., J. Amer. Statist. Assoc. 57 33–45. 0104.11905 10.1080/01621459.1962.10482149

4.

[4] Davis, T. A. (2006)., Direct Methods for Linear Sparse Systems. SIAM, Philadelphia.[4] Davis, T. A. (2006)., Direct Methods for Linear Sparse Systems. SIAM, Philadelphia.

5.

[5] Du, J., Zhang, H. and Mandrekar, V. S. (2009). Fixed-domain asymptotic properties of tapered maximum likelihood estimators., Ann. Statist. 37 3330–3361. 1369.62248 10.1214/08-AOS676 euclid.aos/1250515389[5] Du, J., Zhang, H. and Mandrekar, V. S. (2009). Fixed-domain asymptotic properties of tapered maximum likelihood estimators., Ann. Statist. 37 3330–3361. 1369.62248 10.1214/08-AOS676 euclid.aos/1250515389

6.

[6] Furrer, R., Genton, M. G., and Nychka, D. (2006). Covariance tapering for interpolation of large spatial datasets., J. Comput. Graph. Statist. 15 502–523.[6] Furrer, R., Genton, M. G., and Nychka, D. (2006). Covariance tapering for interpolation of large spatial datasets., J. Comput. Graph. Statist. 15 502–523.

7.

[7] Gneiting, T. (2002). Compactly supported correlation functions., J. Multivar. Anal. 83 493–508. 1011.60015 10.1006/jmva.2001.2056[7] Gneiting, T. (2002). Compactly supported correlation functions., J. Multivar. Anal. 83 493–508. 1011.60015 10.1006/jmva.2001.2056

8.

[8] Grafakos, L. (2008)., Classical Fourier Analysis, 2nd edition. Springer, New York. 1220.42001[8] Grafakos, L. (2008)., Classical Fourier Analysis, 2nd edition. Springer, New York. 1220.42001

9.

[9] Ibragimov, I. A. and Rozanov, Y. A. (1978)., Gaussian Random Processes. Springer-Verlag, New York. 0392.60037[9] Ibragimov, I. A. and Rozanov, Y. A. (1978)., Gaussian Random Processes. Springer-Verlag, New York. 0392.60037

10.

[10] Kaufman, C. G., Schervish, M. J. and Nychka, D. W. (2008). Covariance estimation for likelihood-based estimation in large spatial data sets., J. Amer. Statist. Assoc. 103 1545–1555. 1286.62072 10.1198/016214508000000959[10] Kaufman, C. G., Schervish, M. J. and Nychka, D. W. (2008). Covariance estimation for likelihood-based estimation in large spatial data sets., J. Amer. Statist. Assoc. 103 1545–1555. 1286.62072 10.1198/016214508000000959

11.

[11] Stein, E. M. and Weiss, G. (1971)., Introduction to Fourier Analysis on Euclidean Spaces. Princeton Univ. Press, Princeton. 0232.42007[11] Stein, E. M. and Weiss, G. (1971)., Introduction to Fourier Analysis on Euclidean Spaces. Princeton Univ. Press, Princeton. 0232.42007

12.

[12] Stein, M. L. (1999)., Interpolation of Spatial Data: Some Theory for Kriging. Springer-Verlag, New York. 0924.62100[12] Stein, M. L. (1999)., Interpolation of Spatial Data: Some Theory for Kriging. Springer-Verlag, New York. 0924.62100

13.

[13] Stein, M. L., Chi, Z. and Welty, L. J. (2004). Approximating likelihoods for large spatial data sets., J. Roy. Statist. Soc. Ser. B 66 275–296. 1062.62094 10.1046/j.1369-7412.2003.05512.x[13] Stein, M. L., Chi, Z. and Welty, L. J. (2004). Approximating likelihoods for large spatial data sets., J. Roy. Statist. Soc. Ser. B 66 275–296. 1062.62094 10.1046/j.1369-7412.2003.05512.x

14.

[14] Wang, D. (2010)., Fixed-domain Asymptotics and Consistent Estimation for Gaussian Random Field Models in Spatial Statistics and Computer Experiments. Nat. Univ. Singapore PhD thesis, Singapore.[14] Wang, D. (2010)., Fixed-domain Asymptotics and Consistent Estimation for Gaussian Random Field Models in Spatial Statistics and Computer Experiments. Nat. Univ. Singapore PhD thesis, Singapore.

15.

[15] Wendland, H. (1995). Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree., Adv. Comput. Math. 4 389–396. 0838.41014 10.1007/BF02123482[15] Wendland, H. (1995). Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree., Adv. Comput. Math. 4 389–396. 0838.41014 10.1007/BF02123482

16.

[16] Wendland, H. (1998). Error estimates for interpolation by compactly supported radial basis functions of minimal degree., J. Approx. Theory 93 258–272. 0904.41013 10.1006/jath.1997.3137[16] Wendland, H. (1998). Error estimates for interpolation by compactly supported radial basis functions of minimal degree., J. Approx. Theory 93 258–272. 0904.41013 10.1006/jath.1997.3137

17.

[17] Wu, Z. M. (1995). Compactly supported positive definite radial functions., Adv. Comput. Math. 4 283–292. MR1357720 0837.41016 10.1007/BF03177517[17] Wu, Z. M. (1995). Compactly supported positive definite radial functions., Adv. Comput. Math. 4 283–292. MR1357720 0837.41016 10.1007/BF03177517

18.

[18] Ying, Z. (1991). Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process., J. Multivar. Anal. 36 280–296. 0733.62091 10.1016/0047-259X(91)90062-7[18] Ying, Z. (1991). Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process., J. Multivar. Anal. 36 280–296. 0733.62091 10.1016/0047-259X(91)90062-7

19.

[19] Zhang, H. (2004). Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics., J. Amer. Statist. Assoc. 99 250–261. 1089.62538 10.1198/016214504000000241[19] Zhang, H. (2004). Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics., J. Amer. Statist. Assoc. 99 250–261. 1089.62538 10.1198/016214504000000241
Copyright © 2011 The Institute of Mathematical Statistics and the Bernoulli Society
Daqing Wang and Wei-Liem Loh "On fixed-domain asymptotics and covariance tapering in Gaussian random field models," Electronic Journal of Statistics 5(none), 238-269, (2011). https://doi.org/10.1214/11-EJS607
Published: 2011
Back to Top