Open Access
2010 Confidence sets based on penalized maximum likelihood estimators in Gaussian regression
Benedikt M. Pötscher, Ulrike Schneider
Electron. J. Statist. 4: 334-360 (2010). DOI: 10.1214/09-EJS523

Abstract

Confidence intervals based on penalized maximum likelihood estimators such as the LASSO, adaptive LASSO, and hard-thresholding are analyzed. In the known-variance case, the finite-sample coverage properties of such intervals are determined and it is shown that symmetric intervals are the shortest. The length of the shortest intervals based on the hard-thresholding estimator is larger than the length of the shortest interval based on the adaptive LASSO, which is larger than the length of the shortest interval based on the LASSO, which in turn is larger than the standard interval based on the maximum likelihood estimator. In the case where the penalized estimators are tuned to possess the ‘sparsity property’, the intervals based on these estimators are larger than the standard interval by an order of magnitude. Furthermore, a simple asymptotic confidence interval construction in the ‘sparse’ case, that also applies to the smoothly clipped absolute deviation estimator, is discussed. The results for the known-variance case are shown to carry over to the unknown-variance case in an appropriate asymptotic sense.

Citation

Download Citation

Benedikt M. Pötscher. Ulrike Schneider. "Confidence sets based on penalized maximum likelihood estimators in Gaussian regression." Electron. J. Statist. 4 334 - 360, 2010. https://doi.org/10.1214/09-EJS523

Information

Published: 2010
First available in Project Euclid: 15 March 2010

zbMATH: 1329.62156
MathSciNet: MR2645488
Digital Object Identifier: 10.1214/09-EJS523

Subjects:
Primary: 62F25
Secondary: 62C25 , 62J07

Keywords: Adaptive LASSO , confidence set , coverage probability , hard-thresholding , Lasso , Model selection , penalized least squares , penalized maximum likelihood , soft-thresholding , Sparsity

Rights: Copyright © 2010 The Institute of Mathematical Statistics and the Bernoulli Society

Back to Top