Open Access
2021 On approximation theorems for the Euler characteristic with applications to the bootstrap
Johannes Krebs, Benjamin Roycraft, Wolfgang Polonik
Author Affiliations +
Electron. J. Statist. 15(2): 4462-4509 (2021). DOI: 10.1214/21-EJS1898

Abstract

We study approximation theorems for the Euler characteristic of the Vietoris-Rips and Čech filtration. The filtration is obtained from a Poisson or binomial sampling scheme in the critical regime. We apply our results to the smooth bootstrap of the Euler characteristic and determine its rate of convergence in the Kantorovich-Wasserstein distance and in the Kolmogorov distance.

Citation

Download Citation

Johannes Krebs. Benjamin Roycraft. Wolfgang Polonik. "On approximation theorems for the Euler characteristic with applications to the bootstrap." Electron. J. Statist. 15 (2) 4462 - 4509, 2021. https://doi.org/10.1214/21-EJS1898

Information

Received: 1 September 2020; Published: 2021
First available in Project Euclid: 16 September 2021

Digital Object Identifier: 10.1214/21-EJS1898

Subjects:
Primary: 60F05 , 62F40
Secondary: 60B10 , 60D05

Keywords: Binomial process , bootstrap , Čech complex , critical regime , Euler characteristics , functional central limit theorem , Normal approximation , Poisson process , Random geometric complexes , smooth bootstrap , Stochastic geometry , topological data analysis , weak convergence

Vol.15 • No. 2 • 2021
Back to Top