Open Access
2019 Smooth hyperbolic wavelet deconvolution with anisotropic structure
J.R. Wishart
Electron. J. Statist. 13(1): 1694-1716 (2019). DOI: 10.1214/19-EJS1557
Abstract

This paper considers a deconvolution regression problem in a multivariate setting with anisotropic structure and constructs an estimator of the function of interest using the hyperbolic wavelet basis. The deconvolution structure assumed is an anisotropic version of the smooth type (either regular-smooth or super-smooth). The function of interest is assumed to belong to a Besov space with anisotropic smoothness. Global performances of the presented hyperbolic wavelet estimators is measured by obtaining upper bounds on convergence rates in the $\mathscr{L}^{p}$-risk with $1\le p\le 2$ and $1\le p<\infty $ in the regular-smooth and super-smooth cases respectively. The results are compared and contrasted with existing convergence results in the literature.

References

1.

[1] Abramovich, F. and Silverman, B. W. (1998). Wavelet decomposition approaches to statistical inverse problems., Biometrika 85 115–129. 0908.62095 10.1093/biomet/85.1.115[1] Abramovich, F. and Silverman, B. W. (1998). Wavelet decomposition approaches to statistical inverse problems., Biometrika 85 115–129. 0908.62095 10.1093/biomet/85.1.115

2.

[2] Abry, P., Roux, S. G., Wendt, H., Messier, P., Klein, A. G., Tremblay, N., Borgnat, P., Jaffard, S., Vedel, B., Coddington, J. and Daffner, L. A. (2015). Multiscale Anisotropic Texture Analysis and Classification of Photographic Prints: Art scholarship meets image processing algorithms., IEEE Signal Processing Magazine 32 18–27.[2] Abry, P., Roux, S. G., Wendt, H., Messier, P., Klein, A. G., Tremblay, N., Borgnat, P., Jaffard, S., Vedel, B., Coddington, J. and Daffner, L. A. (2015). Multiscale Anisotropic Texture Analysis and Classification of Photographic Prints: Art scholarship meets image processing algorithms., IEEE Signal Processing Magazine 32 18–27.

3.

[3] Autin, F., Claeskens, G. and Freyermuth, J. M. (2014). Hyperbolic wavelet thresholding methods and the curse of dimensionality through the maxiset approach., Applied and Computational Harmonic Analysis 36 239–255. 1336.94013 10.1016/j.acha.2013.04.003[3] Autin, F., Claeskens, G. and Freyermuth, J. M. (2014). Hyperbolic wavelet thresholding methods and the curse of dimensionality through the maxiset approach., Applied and Computational Harmonic Analysis 36 239–255. 1336.94013 10.1016/j.acha.2013.04.003

4.

[4] Autin, F., Claeskens, G. and Freyermuth, J.-m. (2015). Asymptotic performance of projection estimators in standard and hyperbolic wavelet bases., Electronic Journal of Statistics 9 1852–1883. 1336.62125 10.1214/15-EJS1056[4] Autin, F., Claeskens, G. and Freyermuth, J.-m. (2015). Asymptotic performance of projection estimators in standard and hyperbolic wavelet bases., Electronic Journal of Statistics 9 1852–1883. 1336.62125 10.1214/15-EJS1056

5.

[5] Bekmaganbetov, K. A. and Nursultanov, E. D. (2009). Embedding theorems for anisotropic Besov spaces., Izvestiya: Mathematics 73 655–668. 1187.46025 10.1070/IM2009v073n04ABEH002460[5] Bekmaganbetov, K. A. and Nursultanov, E. D. (2009). Embedding theorems for anisotropic Besov spaces., Izvestiya: Mathematics 73 655–668. 1187.46025 10.1070/IM2009v073n04ABEH002460

6.

[6] Benhaddou, R. (2017). On minimax convergence rates under Lp-risk for the anisotropic functional deconvolution model., Statistics and Probability Letters 130 120–125. 1391.62054 10.1016/j.spl.2017.07.008[6] Benhaddou, R. (2017). On minimax convergence rates under Lp-risk for the anisotropic functional deconvolution model., Statistics and Probability Letters 130 120–125. 1391.62054 10.1016/j.spl.2017.07.008

7.

[7] Benhaddou, R., Pensky, M. and Picard, D. (2013). Anisotropic de-noising in functional deconvolution model with dimension-free convergence rates., Electronic Journal of Statistics 7 1686–1715. 1294.62057 10.1214/13-EJS820[7] Benhaddou, R., Pensky, M. and Picard, D. (2013). Anisotropic de-noising in functional deconvolution model with dimension-free convergence rates., Electronic Journal of Statistics 7 1686–1715. 1294.62057 10.1214/13-EJS820

8.

[8] Benhaddou, R., Pensky, M. and Rajapakshage, R. (2019). Anisotropic functional Laplace deconvolution., Journal of Statistical Planning and Inference 199 271–285.[8] Benhaddou, R., Pensky, M. and Rajapakshage, R. (2019). Anisotropic functional Laplace deconvolution., Journal of Statistical Planning and Inference 199 271–285.

9.

[9] Benhaddou, R., Kulik, R., Pensky, M. and Sapatinas, T. (2014). Multichannel deconvolution with long-range dependence: A minimax study., Journal of Statistical Planning and Inference 148 1–19. 06269732 10.1016/j.jspi.2013.12.008[9] Benhaddou, R., Kulik, R., Pensky, M. and Sapatinas, T. (2014). Multichannel deconvolution with long-range dependence: A minimax study., Journal of Statistical Planning and Inference 148 1–19. 06269732 10.1016/j.jspi.2013.12.008

10.

[10] Besov, O. V., Il’in, V. P. and Nikol’skiĭ, S. M. (1978)., Integral Representation of Functions and Imbedding Theorems, Vol ii ed. V. H. Winston & Sons, Washington, D.C.; Halsted Press John Wiley & Sons, New York-Toronto, Ont.-London.[10] Besov, O. V., Il’in, V. P. and Nikol’skiĭ, S. M. (1978)., Integral Representation of Functions and Imbedding Theorems, Vol ii ed. V. H. Winston & Sons, Washington, D.C.; Halsted Press John Wiley & Sons, New York-Toronto, Ont.-London.

11.

[11] Daubechies, I. (1992)., Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics. 0776.42018[11] Daubechies, I. (1992)., Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics. 0776.42018

12.

[12] Deliège, A., Kleyntssens, T. and Nicolay, S. (2017). Mars topography investigated through the wavelet leaders method: A multidimensional study of its fractal structure., Planetary and Space Science 136 46–58.[12] Deliège, A., Kleyntssens, T. and Nicolay, S. (2017). Mars topography investigated through the wavelet leaders method: A multidimensional study of its fractal structure., Planetary and Space Science 136 46–58.

13.

[13] DeVore, R. A., Konyagin, S. V. and Temlyakov, V. N. (1998). Hyperbolic Wavelet Approximation., Constructive Approximation 14 1–26. 0895.41016 10.1007/s003659900060[13] DeVore, R. A., Konyagin, S. V. and Temlyakov, V. N. (1998). Hyperbolic Wavelet Approximation., Constructive Approximation 14 1–26. 0895.41016 10.1007/s003659900060

14.

[14] Donoho, D. L. (1993). Unconditional Bases are Optimal Bases for Data Compression and for Statistical Estimation., Applied and Computational Harmonic Analysis 1 100–115. 0796.62083 10.1006/acha.1993.1008[14] Donoho, D. L. (1993). Unconditional Bases are Optimal Bases for Data Compression and for Statistical Estimation., Applied and Computational Harmonic Analysis 1 100–115. 0796.62083 10.1006/acha.1993.1008

15.

[15] Donoho, D. (1995). Nonlinear Solution of Linear Inverse Problems by Wavelet–Vaguelette Decomposition., Applied and Computational Harmonic Analysis 2 101–126. 0826.65117 10.1006/acha.1995.1008[15] Donoho, D. (1995). Nonlinear Solution of Linear Inverse Problems by Wavelet–Vaguelette Decomposition., Applied and Computational Harmonic Analysis 2 101–126. 0826.65117 10.1006/acha.1995.1008

16.

[16] Donoho, D. L. and Raimondo, M. E. (2004). A fast wavelet algorithm for image deblurring. In, Proc. of 12th Computational Techniques and Applications Conference CTAC-2004 46 29–46.[16] Donoho, D. L. and Raimondo, M. E. (2004). A fast wavelet algorithm for image deblurring. In, Proc. of 12th Computational Techniques and Applications Conference CTAC-2004 46 29–46.

17.

[17] Donoho, D. L., Johnstone, I. M., Kerkyacharian, G. and Picard, D. (1995). Wavelet Shrinkage: Asymptopia?, Journal of the Royal Statistical Society. Series B (Methodological) 57 301–369. 0827.62035 10.1111/j.2517-6161.1995.tb02032.x[17] Donoho, D. L., Johnstone, I. M., Kerkyacharian, G. and Picard, D. (1995). Wavelet Shrinkage: Asymptopia?, Journal of the Royal Statistical Society. Series B (Methodological) 57 301–369. 0827.62035 10.1111/j.2517-6161.1995.tb02032.x

18.

[18] Fan, J. (1991). On the Optimal Rates of Convergence for Nonparametric Deconvolution Problems., The Annals of Statistics 19 1257–1272. 0729.62033 10.1214/aos/1176348248 euclid.aos/1176348248[18] Fan, J. (1991). On the Optimal Rates of Convergence for Nonparametric Deconvolution Problems., The Annals of Statistics 19 1257–1272. 0729.62033 10.1214/aos/1176348248 euclid.aos/1176348248

19.

[19] Fan, J. and Koo, J.-y. (2002). Wavelet deconvolution., IEEE Transactions on Information Theory 48 734–747. 1071.94511 10.1109/18.986021[19] Fan, J. and Koo, J.-y. (2002). Wavelet deconvolution., IEEE Transactions on Information Theory 48 734–747. 1071.94511 10.1109/18.986021

20.

[20] Farouj, Y., Freyermuth, J.-m., Navarro, L., Clausel, M. and Delachartre, P. (2017). Hyperbolic Wavelet-Fisz Denoising for a Model Arising in Ultrasound Imaging., IEEE Transactions on Computational Imaging 3 1–10.[20] Farouj, Y., Freyermuth, J.-m., Navarro, L., Clausel, M. and Delachartre, P. (2017). Hyperbolic Wavelet-Fisz Denoising for a Model Arising in Ultrasound Imaging., IEEE Transactions on Computational Imaging 3 1–10.

21.

[21] Heping, W. (2004). Representation and approximation of multivariate functions with mixed smoothness by hyperbolic wavelets., Journal of Mathematical Analysis and Applications 291 698–715. 1055.42023 10.1016/j.jmaa.2003.11.023[21] Heping, W. (2004). Representation and approximation of multivariate functions with mixed smoothness by hyperbolic wavelets., Journal of Mathematical Analysis and Applications 291 698–715. 1055.42023 10.1016/j.jmaa.2003.11.023

22.

[22] Johnstone, I. M. (1999). Wavelet shrinkage for correlated data and inverse problems: Adaptivity results., Statistica Sinica 9 51–83. 1065.62519[22] Johnstone, I. M. (1999). Wavelet shrinkage for correlated data and inverse problems: Adaptivity results., Statistica Sinica 9 51–83. 1065.62519

23.

[23] Johnstone, I. M., Kerkyacharian, G., Picard, D. and Raimondo, M. (2004). Wavelet deconvolution in a periodic setting., Journal of the Royal Statistical Society: Series B (Statistical Methodology) 66 547–573. 1046.62039 10.1111/j.1467-9868.2004.02056.x[23] Johnstone, I. M., Kerkyacharian, G., Picard, D. and Raimondo, M. (2004). Wavelet deconvolution in a periodic setting., Journal of the Royal Statistical Society: Series B (Statistical Methodology) 66 547–573. 1046.62039 10.1111/j.1467-9868.2004.02056.x

24.

[24] Kerkyacharian, G., Lepski, O. and Picard, D. (2001). Nonlinear estimation in anisotropic multi-index denoising., Probability Theory and Related Fields 121 137–170. 1010.62029 10.1007/PL00008800[24] Kerkyacharian, G., Lepski, O. and Picard, D. (2001). Nonlinear estimation in anisotropic multi-index denoising., Probability Theory and Related Fields 121 137–170. 1010.62029 10.1007/PL00008800

25.

[25] Kerkyacharian, G., Lepski, O. and Picard, D. (2008). Nonlinear Estimation in Anisotropic Multi-Index Denoising. Sparse Case., Theory of Probability & Its Applications 52 58–77. 1315.62031 10.1137/S0040585X97982864[25] Kerkyacharian, G., Lepski, O. and Picard, D. (2008). Nonlinear Estimation in Anisotropic Multi-Index Denoising. Sparse Case., Theory of Probability & Its Applications 52 58–77. 1315.62031 10.1137/S0040585X97982864

26.

[26] Kerkyacharian, G. and Picard, D. (2000). Thresholding algorithms, maxisets and well-concentrated bases., Test 9 283–344. 1107.62323 10.1007/BF02595738[26] Kerkyacharian, G. and Picard, D. (2000). Thresholding algorithms, maxisets and well-concentrated bases., Test 9 283–344. 1107.62323 10.1007/BF02595738

27.

[27] Kerkyacharian, G. and Picard, D. (2003). Entropy, Universal Coding, Approximation, and Bases Properties., Constructive Approximation 20 1–37. 1055.41015 10.1007/s00365-003-0556-z[27] Kerkyacharian, G. and Picard, D. (2003). Entropy, Universal Coding, Approximation, and Bases Properties., Constructive Approximation 20 1–37. 1055.41015 10.1007/s00365-003-0556-z

28.

[28] Kulik, R. and Raimondo, M. $L^p$-Wavelet regression with correlated errors and inverse problems., Statistica Sinica 4 1479–1489. 1191.62072[28] Kulik, R. and Raimondo, M. $L^p$-Wavelet regression with correlated errors and inverse problems., Statistica Sinica 4 1479–1489. 1191.62072

29.

[29] Kulik, R., Sapatinas, T. and Wishart, J. R. (2015). Multichannel deconvolution with long range dependence: Upper bounds on the $L^p$-risk $(1\le p<\infty )$., Applied and Computational Harmonic Analysis 38 357–384. 1311.62057 10.1016/j.acha.2014.04.004[29] Kulik, R., Sapatinas, T. and Wishart, J. R. (2015). Multichannel deconvolution with long range dependence: Upper bounds on the $L^p$-risk $(1\le p<\infty )$., Applied and Computational Harmonic Analysis 38 357–384. 1311.62057 10.1016/j.acha.2014.04.004

30.

[30] Meyer, Y. and Salinger, D. H. (1993)., Wavelets and Operators 1, 1st ed. Cambridge University Press.[30] Meyer, Y. and Salinger, D. H. (1993)., Wavelets and Operators 1, 1st ed. Cambridge University Press.

31.

[31] Neumann, M. H. (2000). Multivariate wavelet thresholding in anisotropic function spaces., Statistica Sinica 10 399–432. MR1769750 0982.62039[31] Neumann, M. H. (2000). Multivariate wavelet thresholding in anisotropic function spaces., Statistica Sinica 10 399–432. MR1769750 0982.62039

32.

[32] Neumann, M. H. and von Sachs, R. (1997). Wavelet thresholding in anisotropic function classes and application to adaptive estimation of evolutionary spectra., The Annals of Statistics 25 38–76. 0871.62081 10.1214/aos/1034276621 euclid.aos/1034276621[32] Neumann, M. H. and von Sachs, R. (1997). Wavelet thresholding in anisotropic function classes and application to adaptive estimation of evolutionary spectra., The Annals of Statistics 25 38–76. 0871.62081 10.1214/aos/1034276621 euclid.aos/1034276621

33.

[33] Pensky, M. and Sapatinas, T. (2009). Functional Deconvolution in a Periodic Setting: Uniform Case., The Annals of Statistics 37 73–104. 1274.62253 10.1214/07-AOS552 euclid.aos/1232115928[33] Pensky, M. and Sapatinas, T. (2009). Functional Deconvolution in a Periodic Setting: Uniform Case., The Annals of Statistics 37 73–104. 1274.62253 10.1214/07-AOS552 euclid.aos/1232115928

34.

[34] Pensky, M. and Sapatinas, T. (2010). On convergence rates equivalency and sampling strategies in functional deconvolution models., The Annals of Statistics 38 1793–1844. 1352.62050 10.1214/09-AOS767 euclid.aos/1269452655[34] Pensky, M. and Sapatinas, T. (2010). On convergence rates equivalency and sampling strategies in functional deconvolution models., The Annals of Statistics 38 1793–1844. 1352.62050 10.1214/09-AOS767 euclid.aos/1269452655

35.

[35] Pensky, M. and Sapatinas, T. (2011). Multichannel boxcar deconvolution with growing number of channels., Electronic Journal of Statistics 5 53–82. 1274.62254 10.1214/11-EJS597[35] Pensky, M. and Sapatinas, T. (2011). Multichannel boxcar deconvolution with growing number of channels., Electronic Journal of Statistics 5 53–82. 1274.62254 10.1214/11-EJS597

36.

[36] Petsa, A. and Sapatinas, T. (2009). Minimax convergence rates under the -risk in the functional deconvolution model., Statistics & Probability Letters 79 1568–1576. 1165.62320 10.1016/j.spl.2009.03.028[36] Petsa, A. and Sapatinas, T. (2009). Minimax convergence rates under the -risk in the functional deconvolution model., Statistics & Probability Letters 79 1568–1576. 1165.62320 10.1016/j.spl.2009.03.028

37.

[37] Proksch, K., Bissantz, N. and Dette, H. (2012). A note on asymptotic uniform confidence bands in a multivariate statistical deconvolution problem. In, ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics (T. E. Simos, G. Psihoyios, C. Tsitouras and Z. Anastassi, eds.) 1479 438–441. AIP Publishing.[37] Proksch, K., Bissantz, N. and Dette, H. (2012). A note on asymptotic uniform confidence bands in a multivariate statistical deconvolution problem. In, ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics (T. E. Simos, G. Psihoyios, C. Tsitouras and Z. Anastassi, eds.) 1479 438–441. AIP Publishing.

38.

[38] Proksch, K., Bissantz, N. and Dette, H. (2015). Confidence bands for multivariate and time dependent inverse regression models., Bernoulli 21 144–175. 1388.62113 10.3150/13-BEJ563 euclid.bj/1426597066[38] Proksch, K., Bissantz, N. and Dette, H. (2015). Confidence bands for multivariate and time dependent inverse regression models., Bernoulli 21 144–175. 1388.62113 10.3150/13-BEJ563 euclid.bj/1426597066

39.

[39] Remenyi, N., Nicolis, O., Nason, G. and Vidakovic, B. (2014). Image Denoising With 2D Scale-Mixing Complex Wavelet Transforms., IEEE Transactions on Image Processing 23 5165–5174. 1374.94318 10.1109/TIP.2014.2362058[39] Remenyi, N., Nicolis, O., Nason, G. and Vidakovic, B. (2014). Image Denoising With 2D Scale-Mixing Complex Wavelet Transforms., IEEE Transactions on Image Processing 23 5165–5174. 1374.94318 10.1109/TIP.2014.2362058

40.

[40] Richard, F. J. P. (2018). Anisotropy of Hölder Gaussian random fields: characterization, estimation, and application to image textures., Statistics and Computing 28 1155–1168.[40] Richard, F. J. P. (2018). Anisotropy of Hölder Gaussian random fields: characterization, estimation, and application to image textures., Statistics and Computing 28 1155–1168.

41.

[41] Roux, S. G., Clausel, M., Vedel, B., Jaffard, S. and Abry, P. (2013). Self-similar anisotropic texture analysis: The hyperbolic wavelet transform contribution., IEEE Transactions on Image Processing 22 4353–4363. 1373.94354 10.1109/TIP.2013.2272515[41] Roux, S. G., Clausel, M., Vedel, B., Jaffard, S. and Abry, P. (2013). Self-similar anisotropic texture analysis: The hyperbolic wavelet transform contribution., IEEE Transactions on Image Processing 22 4353–4363. 1373.94354 10.1109/TIP.2013.2272515

42.

[42] Triebel, H. (2006)., Theory of Function Spaces III. Monographs in Mathematics 100. Birkhäuser Basel.[42] Triebel, H. (2006)., Theory of Function Spaces III. Monographs in Mathematics 100. Birkhäuser Basel.

43.

[43] Wang, Y. (1997). Minimax estimation via wavelets for indirect long-memory data., Journal of Statistical Planning and Inference 64 45–55. 0890.62031 10.1016/S0378-3758(96)00205-4[43] Wang, Y. (1997). Minimax estimation via wavelets for indirect long-memory data., Journal of Statistical Planning and Inference 64 45–55. 0890.62031 10.1016/S0378-3758(96)00205-4

44.

[44] Wishart, J. R. (2013). Wavelet deconvolution in a periodic setting with long-range dependent errors., Journal of Statistical Planning and Inference 143 867–881. 1259.62075 10.1016/j.jspi.2012.12.001[44] Wishart, J. R. (2013). Wavelet deconvolution in a periodic setting with long-range dependent errors., Journal of Statistical Planning and Inference 143 867–881. 1259.62075 10.1016/j.jspi.2012.12.001
J.R. Wishart "Smooth hyperbolic wavelet deconvolution with anisotropic structure," Electronic Journal of Statistics 13(1), 1694-1716, (2019). https://doi.org/10.1214/19-EJS1557
Received: 1 May 2018; Published: 2019
Vol.13 • No. 1 • 2019
Back to Top