Open Access
2019 Contraction and uniform convergence of isotonic regression
Fan Yang, Rina Foygel Barber
Electron. J. Statist. 13(1): 646-677 (2019). DOI: 10.1214/18-EJS1520

Abstract

We consider the problem of isotonic regression, where the underlying signal $x$ is assumed to satisfy a monotonicity constraint, that is, $x$ lies in the cone $\{x\in \mathbb{R}^{n}:x_{1}\leq \dots\leq x_{n}\}$. We study the isotonic projection operator (projection to this cone), and find a necessary and sufficient condition characterizing all norms with respect to which this projection is contractive. This enables a simple and non-asymptotic analysis of the convergence properties of isotonic regression, yielding uniform confidence bands that adapt to the local Lipschitz properties of the signal.

Citation

Download Citation

Fan Yang. Rina Foygel Barber. "Contraction and uniform convergence of isotonic regression." Electron. J. Statist. 13 (1) 646 - 677, 2019. https://doi.org/10.1214/18-EJS1520

Information

Received: 1 April 2018; Published: 2019
First available in Project Euclid: 16 February 2019

zbMATH: 07038000
MathSciNet: MR3914177
Digital Object Identifier: 10.1214/18-EJS1520

Subjects:
Primary: 62G07 , 62G08

Keywords: contraction , Convergence rates , data-adaptive band , Density estimation , isotonic regression

Vol.13 • No. 1 • 2019
Back to Top