Translator Disclaimer
2018 Optimal prediction for additive function-on-function regression
Matthew Reimherr, Bharath Sriperumbudur, Bahaeddine Taoufik
Electron. J. Statist. 12(2): 4571-4601 (2018). DOI: 10.1214/18-EJS1505

Abstract

As with classic statistics, functional regression models are invaluable in the analysis of functional data. While there are now extensive tools with accompanying theory available for linear models, there is still a great deal of work to be done concerning nonlinear models for functional data. In this work we consider the Additive Function-on-Function Regression model, a type of nonlinear model that uses an additive relationship between the functional outcome and functional covariate. We present an estimation methodology built upon Reproducing Kernel Hilbert Spaces, and establish optimal rates of convergence for our estimates in terms of prediction error. We also discuss computational challenges that arise with such complex models, developing a representer theorem for our estimate as well as a more practical and computationally efficient approximation. Simulations and an application to Cumulative Intraday Returns around the 2008 financial crisis are also provided.

Citation

Download Citation

Matthew Reimherr. Bharath Sriperumbudur. Bahaeddine Taoufik. "Optimal prediction for additive function-on-function regression." Electron. J. Statist. 12 (2) 4571 - 4601, 2018. https://doi.org/10.1214/18-EJS1505

Information

Received: 1 September 2017; Published: 2018
First available in Project Euclid: 21 December 2018

zbMATH: 07003251
MathSciNet: MR3893421
Digital Object Identifier: 10.1214/18-EJS1505

Subjects:
Primary: 62G08, 62G20

JOURNAL ARTICLE
31 PAGES


SHARE
Vol.12 • No. 2 • 2018
Back to Top