Open Access
2017 Statistical inference using the Morse-Smale complex
Yen-Chi Chen, Christopher R. Genovese, Larry Wasserman
Electron. J. Statist. 11(1): 1390-1433 (2017). DOI: 10.1214/17-EJS1271

Abstract

The Morse-Smale complex of a function $f$ decomposes the sample space into cells where $f$ is increasing or decreasing. When applied to nonparametric density estimation and regression, it provides a way to represent, visualize, and compare multivariate functions. In this paper, we present some statistical results on estimating Morse-Smale complexes. This allows us to derive new results for two existing methods: mode clustering and Morse-Smale regression. We also develop two new methods based on the Morse-Smale complex: a visualization technique for multivariate functions and a two-sample, multivariate hypothesis test.

Citation

Download Citation

Yen-Chi Chen. Christopher R. Genovese. Larry Wasserman. "Statistical inference using the Morse-Smale complex." Electron. J. Statist. 11 (1) 1390 - 1433, 2017. https://doi.org/10.1214/17-EJS1271

Information

Received: 1 July 2016; Published: 2017
First available in Project Euclid: 19 April 2017

zbMATH: 1362.62078
MathSciNet: MR3635917
Digital Object Identifier: 10.1214/17-EJS1271

Subjects:
Primary: 62G20
Secondary: 62G86 , 62H30

Keywords: mode clustering , nonparametric estimation , Nonparametric regression , two sample test , visualization

Vol.11 • No. 1 • 2017
Back to Top