Open Access
2017 Adaptive wavelet multivariate regression with errors in variables
Michaël Chichignoud, Van Ha Hoang, Thanh Mai Pham Ngoc, Vincent Rivoirard
Electron. J. Statist. 11(1): 682-724 (2017). DOI: 10.1214/17-EJS1238

Abstract

In the multidimensional setting, we consider the errors-in- variables model. We aim at estimating the unknown nonparametric multivariate regression function with errors in the covariates. We devise an adaptive estimators based on projection kernels on wavelets and a deconvolution operator. We propose an automatic and fully data driven procedure to select the wavelet level resolution. We obtain an oracle inequality and optimal rates of convergence over anisotropic Hölder classes. Our theoretical results are illustrated by some simulations.

Citation

Download Citation

Michaël Chichignoud. Van Ha Hoang. Thanh Mai Pham Ngoc. Vincent Rivoirard. "Adaptive wavelet multivariate regression with errors in variables." Electron. J. Statist. 11 (1) 682 - 724, 2017. https://doi.org/10.1214/17-EJS1238

Information

Received: 1 January 2016; Published: 2017
First available in Project Euclid: 8 March 2017

zbMATH: 1362.62086
MathSciNet: MR3620733
Digital Object Identifier: 10.1214/17-EJS1238

Subjects:
Primary: 62G08

Keywords: Adaptive wavelet estimator , anisotropic regression , Deconvolution , Measurement errors

Vol.11 • No. 1 • 2017
Back to Top