Open Access
2004 Level Sets of Multiparameter Brownian Motions
Eulalia Nualart, Thomas Mountford
Author Affiliations +
Electron. J. Probab. 9: 594-614 (2004). DOI: 10.1214/EJP.v9-169

Abstract

We use Girsanov's theorem to establish a conjecture of Khoshnevisan, Xiao and Zhong that $\phi(r) = r^{N-d/2} (\log \log (\frac{1}{r}))^{d/2}$ is the exact Hausdorff measure function for the zero level set of an $N$-parameter $d$-dimensional additive Brownian motion. We extend this result to a natural multiparameter version of Taylor and Wendel's theorem on the relationship between Brownian local time and the Hausdorff $\phi$-measure of the zero set.

Citation

Download Citation

Eulalia Nualart. Thomas Mountford. "Level Sets of Multiparameter Brownian Motions." Electron. J. Probab. 9 594 - 614, 2004. https://doi.org/10.1214/EJP.v9-169

Information

Accepted: 13 April 2004; Published: 2004
First available in Project Euclid: 6 June 2016

zbMATH: 1064.60109
MathSciNet: MR2080611
Digital Object Identifier: 10.1214/EJP.v9-169

Subjects:
Primary: 60G60
Secondary: 60G15 , 60G17

Keywords: additive Brownian motion , Hausdorff measure , Level sets , Local times

Vol.9 • 2004
Back to Top