Open Access
2024 Weak convergence of the scaled jump chain and number of mutations of the Kingman coalescent
Martina Favero, Henrik Hult
Author Affiliations +
Electron. J. Probab. 29: 1-22 (2024). DOI: 10.1214/24-EJP1128
Abstract

The Kingman coalescent is a fundamental process in population genetics modelling the ancestry of a sample of individuals backwards in time. In this paper, in a large-sample-size regime, we study asymptotic properties of the coalescent under neutrality and a general finite-alleles mutation scheme, i.e. including both parent independent and parent dependent mutation. In particular, we consider a sequence of Markov chains that is related to the coalescent and consists of block-counting and mutation-counting components. We show that these components, suitably scaled, converge weakly to deterministic components and Poisson processes with varying intensities, respectively. Along the way, we develop a novel approach, based on a change of measure, to generalise the convergence result from the parent independent to the parent dependent mutation setting, in which several crucial quantities are not known explicitly.

References

1.

A. D. Barbour, S. N. Ethier, and R. C. Griffiths. A transition function expansion for a diffusion model with selection. Annals of Applied Probability, 10(1):123–162, 2000.  MR1765206A. D. Barbour, S. N. Ethier, and R. C. Griffiths. A transition function expansion for a diffusion model with selection. Annals of Applied Probability, 10(1):123–162, 2000.  MR1765206

2.

A. Bhaskar, A. G. Clark, and Y. S. Song. Distortion of genealogical properties when the sample is very large. Proceedings of the National Academy of Sciences of the United States of America, 111(6):2385–2390, 2014.A. Bhaskar, A. G. Clark, and Y. S. Song. Distortion of genealogical properties when the sample is very large. Proceedings of the National Academy of Sciences of the United States of America, 111(6):2385–2390, 2014.

3.

P. Billingsley. Convergence of probability measures. Wiley Series in Probability and Statistics. John Wiley & Sons Inc., New York, second edition, 1999.  MR1700749P. Billingsley. Convergence of probability measures. Wiley Series in Probability and Statistics. John Wiley & Sons Inc., New York, second edition, 1999.  MR1700749

4.

M. Birkner and J. Blath. Computing likelihoods for coalescents with multiple collisions in the infinitely many sites model. Journal of mathematical biology, 57(3):435–465, 2008.  MR2411228M. Birkner and J. Blath. Computing likelihoods for coalescents with multiple collisions in the infinitely many sites model. Journal of mathematical biology, 57(3):435–465, 2008.  MR2411228

5.

M. Birkner, J. Blath, and M. Steinrücken. Importance sampling for lambda-coalescents in the infinitely many sites model. Theoretical population biology, 79(4):155–173, 2011.M. Birkner, J. Blath, and M. Steinrücken. Importance sampling for lambda-coalescents in the infinitely many sites model. Theoretical population biology, 79(4):155–173, 2011.

6.

M. De Iorio and R. C. Griffiths. Importance sampling on coalescent histories. I. Advances in Applied Probability, 36(2):417–433, 2004.  MR2058143M. De Iorio and R. C. Griffiths. Importance sampling on coalescent histories. I. Advances in Applied Probability, 36(2):417–433, 2004.  MR2058143

7.

A. M. Etheridge and R. C. Griffiths. A coalescent dual process in a Moran model with genic selection. Theoretical Population Biology, 75:320–330, 2009.A. M. Etheridge and R. C. Griffiths. A coalescent dual process in a Moran model with genic selection. Theoretical Population Biology, 75:320–330, 2009.

8.

S. N. Ethier and T. G. Kurtz. Markov processes: characterization and convergence, volume 282. John Wiley & Sons, 1986.  MR0838085S. N. Ethier and T. G. Kurtz. Markov processes: characterization and convergence, volume 282. John Wiley & Sons, 1986.  MR0838085

9.

M. Favero, H. Hult, and T. Koski. A dual process for the coupled wright-fisher diffusion. Journal of Mathematical Biology, 82(6), 2021.  MR4204660M. Favero, H. Hult, and T. Koski. A dual process for the coupled wright-fisher diffusion. Journal of Mathematical Biology, 82(6), 2021.  MR4204660

10.

M. Favero and H. Hult. Asymptotic behaviour of sampling and transition probabilities in coalescent models under selection and parent dependent mutations. Electronic Communications in Probability, 27:1–13, 2022.  MR4440261M. Favero and H. Hult. Asymptotic behaviour of sampling and transition probabilities in coalescent models under selection and parent dependent mutations. Electronic Communications in Probability, 27:1–13, 2022.  MR4440261

11.

M. Favero and P. A. Jenkins. Sampling probabilities, diffusions, ancestral graphs, and duality under strong selection. arXiv: 2312.17406, 2023+.M. Favero and P. A. Jenkins. Sampling probabilities, diffusions, ancestral graphs, and duality under strong selection. arXiv: 2312.17406, 2023+.

12.

R. C. Griffiths. The two-locus ancestral graph. In I. V. Basawa and R. L. Taylor, editors, Selected Proceedings of the Sheffield Symposium on Applied Probability, volume 18 of Lecture Notes–Monograph Series, pages 100–117. Institute of Mathematical Statistics, Hayward, CA, 1991.  MR1193063R. C. Griffiths. The two-locus ancestral graph. In I. V. Basawa and R. L. Taylor, editors, Selected Proceedings of the Sheffield Symposium on Applied Probability, volume 18 of Lecture Notes–Monograph Series, pages 100–117. Institute of Mathematical Statistics, Hayward, CA, 1991.  MR1193063

13.

R. C. Griffiths, P. A. Jenkins, and Y. S. Song. Importance sampling and the two-locus model with subdivided population structure. Advances in applied probability, 40(2):473–500, 2008.  MR2433706R. C. Griffiths, P. A. Jenkins, and Y. S. Song. Importance sampling and the two-locus model with subdivided population structure. Advances in applied probability, 40(2):473–500, 2008.  MR2433706

14.

R. C. Griffiths and P. Marjoram. An ancestral recombination graph. In P. Donelly and S. Tavarè, editors, Progress in Population Genetics and Human Evolution, page 257–270. Springer-Verlag, Berlin, 1997.  MR1493031R. C. Griffiths and P. Marjoram. An ancestral recombination graph. In P. Donelly and S. Tavarè, editors, Progress in Population Genetics and Human Evolution, page 257–270. Springer-Verlag, Berlin, 1997.  MR1493031

15.

R. C. Griffiths and S. Tavaré. Simulating probability distributions in the coalescent. Theoretical Population Biology, 46(2):131–159, 1994.R. C. Griffiths and S. Tavaré. Simulating probability distributions in the coalescent. Theoretical Population Biology, 46(2):131–159, 1994.

16.

R. C. Griffiths, P. A. Jenkins and S. Lessard. A coalescent dual process for a Wright–Fisher diffusion with recombination and its application to haplotype partitioning. Theoretical Population Biology, 112: 126-138, 2016.R. C. Griffiths, P. A. Jenkins and S. Lessard. A coalescent dual process for a Wright–Fisher diffusion with recombination and its application to haplotype partitioning. Theoretical Population Biology, 112: 126-138, 2016.

17.

A. Hobolth, M. K. Uyenoyama, and C. Wiuf. Importance sampling for the infinite sites model. Statistical applications in genetics and molecular biology, 7(1):Article32, 2008.  MR2457045A. Hobolth, M. K. Uyenoyama, and C. Wiuf. Importance sampling for the infinite sites model. Statistical applications in genetics and molecular biology, 7(1):Article32, 2008.  MR2457045

18.

J. Kelleher, A. M. Etheridge, and G. McVean. Efficient coalescent simulation and genealogical analysis for large sample sizes. PLOS Computational Biology, 12(5), 2016.J. Kelleher, A. M. Etheridge, and G. McVean. Efficient coalescent simulation and genealogical analysis for large sample sizes. PLOS Computational Biology, 12(5), 2016.

19.

J. F. C. Kingman. The coalescent. Stochastic Processes and their Applications, 13(3):235–248, 1982.  MR0671034J. F. C. Kingman. The coalescent. Stochastic Processes and their Applications, 13(3):235–248, 1982.  MR0671034

20.

J. Koskela, P. A. Jenkins, and D. Spanò. Computational inference beyond Kingman’s coalescent. J. Appl. Probab., 52(2):519–537, 06 2015.  MR3372090J. Koskela, P. A. Jenkins, and D. Spanò. Computational inference beyond Kingman’s coalescent. J. Appl. Probab., 52(2):519–537, 06 2015.  MR3372090

21.

J. Koskela, D. Spanò, and P. A. Jenkins. Inference and rare event simulation for stopped Markov processes via reverse-time sequential Monte Carlo. Statistics and Computing, 28(1):131–144, Jan 2018.  MR3741642J. Koskela, D. Spanò, and P. A. Jenkins. Inference and rare event simulation for stopped Markov processes via reverse-time sequential Monte Carlo. Statistics and Computing, 28(1):131–144, Jan 2018.  MR3741642

22.

S. M. Krone and C. Neuhauser. Ancestral processes with selection. Theoretical Population Biology, 51:210–237, 1997.S. M. Krone and C. Neuhauser. Ancestral processes with selection. Theoretical Population Biology, 51:210–237, 1997.

23.

T. G. Kurtz. Lectures on Stochastic Analysis. University of Wisconsin – Madison, 2001.T. G. Kurtz. Lectures on Stochastic Analysis. University of Wisconsin – Madison, 2001.

24.

M. Mandelkern. Metrization of the one-point compactification. Proceedings of the AMS, 107(4), 1989.  MR0991703M. Mandelkern. Metrization of the one-point compactification. Proceedings of the AMS, 107(4), 1989.  MR0991703

25.

M. Möhle and S. Sagitov. A classification of coalescent processes for haploid exchangeable population models. Annals of Probability, 29:1547–1562, 2001.  MR1880231M. Möhle and S. Sagitov. A classification of coalescent processes for haploid exchangeable population models. Annals of Probability, 29:1547–1562, 2001.  MR1880231

26.

C. Neuhauser and S. M. Krone. The genealogy of samples in models with selection. Genetics, 154:519–534, 1997.C. Neuhauser and S. M. Krone. The genealogy of samples in models with selection. Genetics, 154:519–534, 1997.

27.

J. Pitman. Coalescent with multiple collisions. Annals of Probability, 27:1870–1902, 1999.  MR1742892J. Pitman. Coalescent with multiple collisions. Annals of Probability, 27:1870–1902, 1999.  MR1742892

28.

D. Pollard. Convergence of Stochastic Processes. Springer Series in Statistics. Springer-Verlag New York, 1984.  MR0762984D. Pollard. Convergence of Stochastic Processes. Springer Series in Statistics. Springer-Verlag New York, 1984.  MR0762984

29.

S. Sagitov. The general coalescent with asynchronous mergers of ancestral lines. Journal of Applied Probability, 36:1116–1125, 1999.  MR1742154S. Sagitov. The general coalescent with asynchronous mergers of ancestral lines. Journal of Applied Probability, 36:1116–1125, 1999.  MR1742154

30.

T. Shiga. Diffusion Processes in Population Genetics. J. Math. Kyoto Univ. (JMKYAZ), 21(1):133–151, 1981.  MR0606316T. Shiga. Diffusion Processes in Population Genetics. J. Math. Kyoto Univ. (JMKYAZ), 21(1):133–151, 1981.  MR0606316

31.

J. Schweinsberg. Coalescents with simultaneous multiple collisions. Electronic Journal of Probability, 5:50pp, 2000.  MR1781024J. Schweinsberg. Coalescents with simultaneous multiple collisions. Electronic Journal of Probability, 5:50pp, 2000.  MR1781024

32.

M. Stephens and P. Donnelly. Inference in molecular population genetics. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 62(4):605–635, 2000.  MR1796282M. Stephens and P. Donnelly. Inference in molecular population genetics. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 62(4):605–635, 2000.  MR1796282

33.

M. Stephens and P. Donnelly. Ancestral inference in population genetics models with selection (with discussion). Australian & New Zealand Journal of Statistics, 45(4):395–430, 12 2003.  MR2018460M. Stephens and P. Donnelly. Ancestral inference in population genetics models with selection (with discussion). Australian & New Zealand Journal of Statistics, 45(4):395–430, 12 2003.  MR2018460

34.

J. Wakeley. Developments in coalescent theory from single loci to chromosomes. Theoretical population biology, 133:56–64, 2020.J. Wakeley. Developments in coalescent theory from single loci to chromosomes. Theoretical population biology, 133:56–64, 2020.
Martina Favero and Henrik Hult "Weak convergence of the scaled jump chain and number of mutations of the Kingman coalescent," Electronic Journal of Probability 29(none), 1-22, (2024). https://doi.org/10.1214/24-EJP1128
Received: 13 September 2023; Accepted: 17 April 2024; Published: 2024
Vol.29 • 2024
Back to Top