Open Access
2024 Mixing of Metropolis-adjusted Markov chains via couplings: The high acceptance regime
Nawaf Bou-Rabee, Stefan Oberdörster
Author Affiliations +
Electron. J. Probab. 29: 1-27 (2024). DOI: 10.1214/24-EJP1150
Abstract

We present a coupling framework to upper bound the total variation mixing time of various Metropolis-adjusted, gradient-based Markov kernels in the ‘high acceptance regime’. The approach uses a localization argument to boost local mixing of the underlying unadjusted kernel to mixing of the adjusted kernel when the acceptance rate is suitably high. As an application, mixing time guarantees are developed for a non-reversible, adjusted Markov chain based on the kinetic Langevin diffusion, where little is currently understood.

References

1.

J. M. Altschuler and S. Chewi, Faster high-accuracy log-concave sampling via algorithmic warm starts, arXiv preprint arXiv: 2302.10249 (2023).  MR4720376J. M. Altschuler and S. Chewi, Faster high-accuracy log-concave sampling via algorithmic warm starts, arXiv preprint arXiv: 2302.10249 (2023).  MR4720376

2.

C. Andrieu, A. Lee, and S. Livingstone, A general perspective on the metropolis-hastings kernel, arXiv preprint arXiv: 2012.14881 (2020).C. Andrieu, A. Lee, and S. Livingstone, A general perspective on the metropolis-hastings kernel, arXiv preprint arXiv: 2012.14881 (2020).

3.

A. Beskos, F. J. Pinski, J. M. Sanz-Serna, and A. M. Stuart, Hybrid Monte-Carlo on Hilbert spaces, Stochastic Processes and their Applications 121 (2011), no. 10, 2201–2230.  MR2822774A. Beskos, F. J. Pinski, J. M. Sanz-Serna, and A. M. Stuart, Hybrid Monte-Carlo on Hilbert spaces, Stochastic Processes and their Applications 121 (2011), no. 10, 2201–2230.  MR2822774

4.

L. J. Billera and P. Diaconis, A Geometric Interpretation of the Metropolis-Hastings Algorithm, Statistical Science 16 (2001), no. 4, 335 – 339.  MR1888448L. J. Billera and P. Diaconis, A Geometric Interpretation of the Metropolis-Hastings Algorithm, Statistical Science 16 (2001), no. 4, 335 – 339.  MR1888448

5.

N. Bou-Rabee, Time integrators for molecular dynamics, Entropy 16 (2014), 138–162.N. Bou-Rabee, Time integrators for molecular dynamics, Entropy 16 (2014), 138–162.

6.

N. Bou-Rabee and A. Eberle, Two-scale coupling for preconditioned hamiltonian monte carlo in infinite dimensions, Stochastics and Partial Differential Equations: Analysis and Computations 9 (2021), no. 1, 207–242.  MR4218791N. Bou-Rabee and A. Eberle, Two-scale coupling for preconditioned hamiltonian monte carlo in infinite dimensions, Stochastics and Partial Differential Equations: Analysis and Computations 9 (2021), no. 1, 207–242.  MR4218791

7.

N. Bou-Rabee and A. Eberle, Couplings for Andersen Dynamics in High Dimension, Ann. Inst. H. Poincaré Probab. Statist 58 (2022), no. 2, 916–944.  MR4421613N. Bou-Rabee and A. Eberle, Couplings for Andersen Dynamics in High Dimension, Ann. Inst. H. Poincaré Probab. Statist 58 (2022), no. 2, 916–944.  MR4421613

8.

N. Bou-Rabee and A. Eberle, Mixing time guarantees for unadjusted hamiltonian monte carlo, Bernoulli 29 (2023), no. 1, 75–104.  MR4497240N. Bou-Rabee and A. Eberle, Mixing time guarantees for unadjusted hamiltonian monte carlo, Bernoulli 29 (2023), no. 1, 75–104.  MR4497240

9.

N. Bou-Rabee, A. Eberle, and R. Zimmer, Coupling and convergence for hamiltonian monte carlo, Ann. Appl. Probab. 30 (2020), no. 3, 1209–1250.  MR4133372N. Bou-Rabee, A. Eberle, and R. Zimmer, Coupling and convergence for hamiltonian monte carlo, Ann. Appl. Probab. 30 (2020), no. 3, 1209–1250.  MR4133372

10.

N. Bou-Rabee and M. Hairer, Non-asymptotic mixing of the MALA algorithm, IMA J of Numer Anal 33 (2013), 80–110.  MR3020951N. Bou-Rabee and M. Hairer, Non-asymptotic mixing of the MALA algorithm, IMA J of Numer Anal 33 (2013), 80–110.  MR3020951

11.

N. Bou-Rabee and J. M. Sanz-Serna, Geometric integrators and the hamiltonian Monte Carlo method, Acta Numerica 27 (2018), 113–206.  MR3826507N. Bou-Rabee and J. M. Sanz-Serna, Geometric integrators and the hamiltonian Monte Carlo method, Acta Numerica 27 (2018), 113–206.  MR3826507

12.

N. Bou-Rabee and K. Schuh, Convergence of unadjusted Hamiltonian Monte Carlo for mean-field models, Electronic Journal of Probability 28 (2023), no. none, 1 – 40.  MR4610714N. Bou-Rabee and K. Schuh, Convergence of unadjusted Hamiltonian Monte Carlo for mean-field models, Electronic Journal of Probability 28 (2023), no. none, 1 – 40.  MR4610714

13.

N. Bou-Rabee and E. Vanden-Eijnden, Pathwise accuracy and ergodicity of Metropolized integrators for SDEs, Comm Pure and Appl Math 63 (2010), 655–696.  MR2583309N. Bou-Rabee and E. Vanden-Eijnden, Pathwise accuracy and ergodicity of Metropolized integrators for SDEs, Comm Pure and Appl Math 63 (2010), 655–696.  MR2583309

14.

G. Bussi, D. Donadio, and M. Parrinello, Canonical sampling through velocity rescaling, J Chem Phys 126 (2007), 014101.G. Bussi, D. Donadio, and M. Parrinello, Canonical sampling through velocity rescaling, J Chem Phys 126 (2007), 014101.

15.

O. Butkovsky, Subgeometric rates of convergence of Markov processes in the Wasserstein metric, The Annals of Applied Probability 24 (2014), no. 2, 526 – 552.  MR3178490O. Butkovsky, Subgeometric rates of convergence of Markov processes in the Wasserstein metric, The Annals of Applied Probability 24 (2014), no. 2, 526 – 552.  MR3178490

16.

E. Camrud, A. Durmus, P. Monmarché, and G. Stoltz, Second order quantitative bounds for unadjusted generalized hamiltonian monte carlo, arXiv preprint arXiv: 2306.09513 (2023).E. Camrud, A. Durmus, P. Monmarché, and G. Stoltz, Second order quantitative bounds for unadjusted generalized hamiltonian monte carlo, arXiv preprint arXiv: 2306.09513 (2023).

17.

Yu Cao, Jianfeng Lu, and Lihan Wang, On explicit l2-convergence rate estimate for underdamped langevin dynamics, Archive for Rational Mechanics and Analysis 247 (2023), 90.  MR4632836Yu Cao, Jianfeng Lu, and Lihan Wang, On explicit l2-convergence rate estimate for underdamped langevin dynamics, Archive for Rational Mechanics and Analysis 247 (2023), 90.  MR4632836

18.

Y. Chen, R. Dwivedi, M. J. Wainwright, and B. Yu, Fast mixing of metropolized hamiltonian monte carlo: Benefits of multi-step gradients, Journal of Machine Learning Research 21 (2020), no. 92, 1–72.  MR4119160Y. Chen, R. Dwivedi, M. J. Wainwright, and B. Yu, Fast mixing of metropolized hamiltonian monte carlo: Benefits of multi-step gradients, Journal of Machine Learning Research 21 (2020), no. 92, 1–72.  MR4119160

19.

Z. Chen and K. Gatmiry, When does Metropolized Hamiltonian Monte Carlo provably outperform Metropolis-adjusted Langevin algorithm?, arXiv preprint arXiv: 2304.04724 (2023).Z. Chen and K. Gatmiry, When does Metropolized Hamiltonian Monte Carlo provably outperform Metropolis-adjusted Langevin algorithm?, arXiv preprint arXiv: 2304.04724 (2023).

20.

X. Cheng, N. S. Chatterji, Y. Abbasi-Yadkori, P. L. Bartlett, and M. I. Jordan, Sharp convergence rates for langevin dynamics in the nonconvex setting, arXiv preprint arXiv: 1805.01648 (2018).X. Cheng, N. S. Chatterji, Y. Abbasi-Yadkori, P. L. Bartlett, and M. I. Jordan, Sharp convergence rates for langevin dynamics in the nonconvex setting, arXiv preprint arXiv: 1805.01648 (2018).

21.

X. Cheng, N. S. Chatterji, P. L. Bartlett, and M. I. Jordan, Underdamped Langevin MCMC: A non-asymptotic analysis, Conference On Learning Theory, 2018, pp. 300–323.X. Cheng, N. S. Chatterji, P. L. Bartlett, and M. I. Jordan, Underdamped Langevin MCMC: A non-asymptotic analysis, Conference On Learning Theory, 2018, pp. 300–323.

22.

S. Chewi, C. Lu, K. Ahn, X. Cheng, T. L. Gouic, and P. Rigollet, Optimal dimension dependence of the metropolis-adjusted langevin algorithm, arXiv preprint arXiv: 2012.12810 (2020).S. Chewi, C. Lu, K. Ahn, X. Cheng, T. L. Gouic, and P. Rigollet, Optimal dimension dependence of the metropolis-adjusted langevin algorithm, arXiv preprint arXiv: 2012.12810 (2020).

23.

A. S. Dalalyan, Theoretical guarantees for approximate sampling from smooth and log-concave densities, Journal of the Royal Statistical Society Series B: Statistical Methodology 79 (2017), no. 3, 651–676.  MR3641401A. S. Dalalyan, Theoretical guarantees for approximate sampling from smooth and log-concave densities, Journal of the Royal Statistical Society Series B: Statistical Methodology 79 (2017), no. 3, 651–676.  MR3641401

24.

A. S. Dalalyan and L. Riou-Durand, On sampling from a log-concave density using kinetic langevin diffusions, Bernoulli 26 (2020), no. 3, 1956–1988.  MR4091098A. S. Dalalyan and L. Riou-Durand, On sampling from a log-concave density using kinetic langevin diffusions, Bernoulli 26 (2020), no. 3, 1956–1988.  MR4091098

25.

V. De Bortoli and A. Durmus, Convergence of diffusions and their discretizations: from continuous to discrete processes and back, arXiv preprint arXiv: 1904.09808 (2019).V. De Bortoli and A. Durmus, Convergence of diffusions and their discretizations: from continuous to discrete processes and back, arXiv preprint arXiv: 1904.09808 (2019).

26.

G. Deligiannidis, D. Paulin, A. Bouchard-Côté, and A. Doucet, Randomized Hamiltonian Monte Carlo as scaling limit of the bouncy particle sampler and dimension-free convergence rates, The Annals of Applied Probability 31 (2021), no. 6, 2612 – 2662.  MR4350970G. Deligiannidis, D. Paulin, A. Bouchard-Côté, and A. Doucet, Randomized Hamiltonian Monte Carlo as scaling limit of the bouncy particle sampler and dimension-free convergence rates, The Annals of Applied Probability 31 (2021), no. 6, 2612 – 2662.  MR4350970

27.

P. Diaconis, The Markov Chain Monte Carlo Revolution, Bulletin of the American Mathematical Society 46 (2009), no. 2, 179–205.  MR2476411P. Diaconis, The Markov Chain Monte Carlo Revolution, Bulletin of the American Mathematical Society 46 (2009), no. 2, 179–205.  MR2476411

28.

P. Diaconis, S. Holmes, and R. M. Neal, Analysis of a nonreversible Markov chain sampler, Annals of Applied Probability (2000), 726–752.  MR1789978P. Diaconis, S. Holmes, and R. M. Neal, Analysis of a nonreversible Markov chain sampler, Annals of Applied Probability (2000), 726–752.  MR1789978

29.

P. Diaconis and L. Saloff-Coste, What do we know about the metropolis algorithm?, Proceedings of the twenty-seventh annual ACM symposium on Theory of computing, 1995, pp. 112–129.P. Diaconis and L. Saloff-Coste, What do we know about the metropolis algorithm?, Proceedings of the twenty-seventh annual ACM symposium on Theory of computing, 1995, pp. 112–129.

30.

R. Douc, E. Moulines, P. Priouret, and P. Soulier, Markov chains, Springer, 2018.  MR3889011R. Douc, E. Moulines, P. Priouret, and P. Soulier, Markov chains, Springer, 2018.  MR3889011

31.

A. Durmus and A. Eberle, Asymptotic bias of inexact markov chain monte carlo methods in high dimension, arXiv: 2108.00682 [math.PR], 2021.A. Durmus and A. Eberle, Asymptotic bias of inexact markov chain monte carlo methods in high dimension, arXiv: 2108.00682 [math.PR], 2021.

32.

A. Durmus, G. Fort, and E. Moulines, Subgeometric rates of convergence in Wasserstein distance for Markov chains, Ann. Inst. H. Poincaré Probab. Statist 52 (2016), no. 4, 1799 – 1822.  MR3573296A. Durmus, G. Fort, and E. Moulines, Subgeometric rates of convergence in Wasserstein distance for Markov chains, Ann. Inst. H. Poincaré Probab. Statist 52 (2016), no. 4, 1799 – 1822.  MR3573296

33.

A. Durmus and E. Moulines, Nonasymptotic convergence analysis for the unadjusted langevin algorithm, Annals of Applied Probability 27 (2017), no. 3, 1551–1587.  MR3678479A. Durmus and E. Moulines, Nonasymptotic convergence analysis for the unadjusted langevin algorithm, Annals of Applied Probability 27 (2017), no. 3, 1551–1587.  MR3678479

34.

A. Durmus and E. Moulines, High-dimensional bayesian inference via the unadjusted langevin algorithm, Bernoulli 25 (2019), no. 4A, 2854–2882.  MR4003567A. Durmus and E. Moulines, High-dimensional bayesian inference via the unadjusted langevin algorithm, Bernoulli 25 (2019), no. 4A, 2854–2882.  MR4003567

35.

A. Durmus and E. Moulines, On the geometric convergence for MALA under verifiable conditions, arXiv preprint arXiv: 2201.01951 (2022).A. Durmus and E. Moulines, On the geometric convergence for MALA under verifiable conditions, arXiv preprint arXiv: 2201.01951 (2022).

36.

A. Durmus, E. Moulines, and E. Saksman, Irreducibility and geometric ergodicity of Hamiltonian Monte Carlo, The Annals of Statistics 48 (2020), no. 6, 3545 – 3564.  MR4185819A. Durmus, E. Moulines, and E. Saksman, Irreducibility and geometric ergodicity of Hamiltonian Monte Carlo, The Annals of Statistics 48 (2020), no. 6, 3545 – 3564.  MR4185819

37.

W. E and D. Li, The Andersen thermostat in molecular dynamics, CPAM 61 (2008), 96–136.  MR2361305W. E and D. Li, The Andersen thermostat in molecular dynamics, CPAM 61 (2008), 96–136.  MR2361305

38.

A. Eberle, Error bounds for Metropolis–Hastings algorithms applied to perturbations of Gaussian measures in high dimensions, The Annals of Applied Probability 24 (2014), no. 1, 337 – 377.  MR3161650A. Eberle, Error bounds for Metropolis–Hastings algorithms applied to perturbations of Gaussian measures in high dimensions, The Annals of Applied Probability 24 (2014), no. 1, 337 – 377.  MR3161650

39.

A. Eberle, Bonn University Lecture Notes: Markov Processes, 4 2023.A. Eberle, Bonn University Lecture Notes: Markov Processes, 4 2023.

40.

A. Eberle, A. Guillin, and R. Zimmer, Couplings and quantitative contraction rates for Langevin dynamics, Ann. Probab. 47 (2019), no. 4, 1982–2010.  MR3980913A. Eberle, A. Guillin, and R. Zimmer, Couplings and quantitative contraction rates for Langevin dynamics, Ann. Probab. 47 (2019), no. 4, 1982–2010.  MR3980913

41.

A. Eberle, A. Guillin, and R. Zimmer, Quantitative harris-type theorems for diffusions and mckean–vlasov processes, Transactions of the American Mathematical Society 371 (2019), no. 10, 7135–7173.  MR3939573A. Eberle, A. Guillin, and R. Zimmer, Quantitative harris-type theorems for diffusions and mckean–vlasov processes, Transactions of the American Mathematical Society 371 (2019), no. 10, 7135–7173.  MR3939573

42.

A. Eberle and M. B. Majka, Quantitative contraction rates for Markov chains on general state spaces, Electronic Journal of Probability 24 (2019), no. none, 1 – 36.  MR3933205A. Eberle and M. B. Majka, Quantitative contraction rates for Markov chains on general state spaces, Electronic Journal of Probability 24 (2019), no. none, 1 – 36.  MR3933205

43.

M. A. Erdogdu and R. Hosseinzadeh, On the convergence of langevin monte carlo: The interplay between tail growth and smoothness, Conference on Learning Theory, PMLR, 2021, pp. 1776–1822.M. A. Erdogdu and R. Hosseinzadeh, On the convergence of langevin monte carlo: The interplay between tail growth and smoothness, Conference on Learning Theory, PMLR, 2021, pp. 1776–1822.

44.

E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration, Springer, 2010.  MR2840298E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration, Springer, 2010.  MR2840298

45.

M. Hairer, Convergence of markov processes, Lecture notes (2010).M. Hairer, Convergence of markov processes, Lecture notes (2010).

46.

M. Hairer and J. C. Mattingly, Yet another look at harris’ ergodic theorem for markov chains, Seminar on Stochastic Analysis, Random Fields and Applications VI: Centro Stefano Franscini, Ascona, May 2008, Springer, 2011, pp. 109–117.  MR2857021M. Hairer and J. C. Mattingly, Yet another look at harris’ ergodic theorem for markov chains, Seminar on Stochastic Analysis, Random Fields and Applications VI: Centro Stefano Franscini, Ascona, May 2008, Springer, 2011, pp. 109–117.  MR2857021

47.

M. Hairer, J. C. Mattingly, and M. Scheutzow, Asymptotic coupling and a general form of harris’ theorem with applications to stochastic delay equations, Probability theory and related fields 149 (2011), 223–259.  MR2773030M. Hairer, J. C. Mattingly, and M. Scheutzow, Asymptotic coupling and a general form of harris’ theorem with applications to stochastic delay equations, Probability theory and related fields 149 (2011), 223–259.  MR2773030

48.

M. Hairer, A. M. Stuart, and S. J. Vollmer, Spectral gaps for a Metropolis–Hastings algorithm in infinite dimensions, Ann. Appl. Probab. 24 (2014), no. 6, 2455–2490.  MR3262508M. Hairer, A. M. Stuart, and S. J. Vollmer, Spectral gaps for a Metropolis–Hastings algorithm in infinite dimensions, Ann. Appl. Probab. 24 (2014), no. 6, 2455–2490.  MR3262508

49.

W. K. Hastings, Monte-Carlo methods using Markov chains and their applications, Biometrika 57 (1970), 97–109.  MR3363437W. K. Hastings, Monte-Carlo methods using Markov chains and their applications, Biometrika 57 (1970), 97–109.  MR3363437

50.

J. Heng and P. E. Jacob, Unbiased hamiltonian monte carlo with couplings, Biometrika 106 (2019), no. 2, 287–302.  MR3949304J. Heng and P. E. Jacob, Unbiased hamiltonian monte carlo with couplings, Biometrika 106 (2019), no. 2, 287–302.  MR3949304

51.

P. E. Jacob, J. O’Leary, and Y. F. Atchadé, Unbiased markov chain monte carlo with couplings (with discussion), J. R. Stat. Soc. Ser. B 82 (2020), 543–600.  MR4112777P. E. Jacob, J. O’Leary, and Y. F. Atchadé, Unbiased markov chain monte carlo with couplings (with discussion), J. R. Stat. Soc. Ser. B 82 (2020), 543–600.  MR4112777

52.

T. S. Kleppe, Connecting the dots: Numerical randomized hamiltonian monte carlo with state-dependent event rates, Journal of Computational and Graphical Statistics 31 (2022), no. 4, 1238–1253.  MR4513384T. S. Kleppe, Connecting the dots: Numerical randomized hamiltonian monte carlo with state-dependent event rates, Journal of Computational and Graphical Statistics 31 (2022), no. 4, 1238–1253.  MR4513384

53.

Y. T. Lee, R. Shen, and K. Tian, Logsmooth gradient concentration and tighter runtimes for Metropolized Hamiltonian Monte Carlo, Proceedings of Thirty Third Conference on Learning Theory, vol. 125, 2020, pp. 2565–2597.Y. T. Lee, R. Shen, and K. Tian, Logsmooth gradient concentration and tighter runtimes for Metropolized Hamiltonian Monte Carlo, Proceedings of Thirty Third Conference on Learning Theory, vol. 125, 2020, pp. 2565–2597.

54.

Y. T. Lee, R. Shen, and K. Tian, Lower bounds on metropolized sampling methods for well-conditioned distributions, Advances in Neural Information Processing Systems, vol. 34, Curran Associates, Inc., 2021, pp. 18812–18824.Y. T. Lee, R. Shen, and K. Tian, Lower bounds on metropolized sampling methods for well-conditioned distributions, Advances in Neural Information Processing Systems, vol. 34, Curran Associates, Inc., 2021, pp. 18812–18824.

55.

B. Leimkuhler, D. Paulin, and P. A. Whalley, Contraction and convergence rates for discretized kinetic langevin dynamics, arXiv preprint arXiv: 2302.10684 (2023).  MR4748799B. Leimkuhler, D. Paulin, and P. A. Whalley, Contraction and convergence rates for discretized kinetic langevin dynamics, arXiv preprint arXiv: 2302.10684 (2023).  MR4748799

56.

T. Lelièvre, M. Rousset, and G. Stoltz, Free energy computations: A mathematical perspective, 1st ed., Imperial College Press, 2010.  MR2681239T. Lelièvre, M. Rousset, and G. Stoltz, Free energy computations: A mathematical perspective, 1st ed., Imperial College Press, 2010.  MR2681239

57.

D. A. Levin, Y. Peres, and E. L. Wilmer, Markov chains and mixing times, American Mathematical Society, 2009.  MR2466937D. A. Levin, Y. Peres, and E. L. Wilmer, Markov chains and mixing times, American Mathematical Society, 2009.  MR2466937

58.

S. Livingstone, M. Betancourt, S. Byrne, and M. Girolami, On the geometric ergodicity of Hamiltonian Monte Carlo, Bernoulli 25 (2019), no. 4A, 3109–3138.  MR4003576S. Livingstone, M. Betancourt, S. Byrne, and M. Girolami, On the geometric ergodicity of Hamiltonian Monte Carlo, Bernoulli 25 (2019), no. 4A, 3109–3138.  MR4003576

59.

N. Madras and D. Sezer, Quantitative bounds for markov chain convergence: Wasserstein and total variation distances, Bernoulli 16 (2010), no. 3, 882–908.  MR2730652N. Madras and D. Sezer, Quantitative bounds for markov chain convergence: Wasserstein and total variation distances, Bernoulli 16 (2010), no. 3, 882–908.  MR2730652

60.

J. C. Mattingly, A. M. Stuart, and D. J. Higham, Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise, Stoch. Proc. Appl. 101 (2002), no. 2, 185–232.  MR1931266J. C. Mattingly, A. M. Stuart, and D. J. Higham, Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise, Stoch. Proc. Appl. 101 (2002), no. 2, 185–232.  MR1931266

61.

K. L. Mengersen and R. L. Tweedie, Rates of convergence of the Hastings and Metropolis algorithms, Ann Stat 24 (1996), 101–121.  MR1389882K. L. Mengersen and R. L. Tweedie, Rates of convergence of the Hastings and Metropolis algorithms, Ann Stat 24 (1996), 101–121.  MR1389882

62.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equations of state calculations by fast computing machines, J Chem Phys 21 (1953), 1087–1092.N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equations of state calculations by fast computing machines, J Chem Phys 21 (1953), 1087–1092.

63.

S. P. Meyn and R. L. Tweedie, Markov chains and stochastic stability, Springer-Verlag, 1993.  MR1287609S. P. Meyn and R. L. Tweedie, Markov chains and stochastic stability, Springer-Verlag, 1993.  MR1287609

64.

S. P. Meyn and R. L. Tweedie, Computable Bounds for Geometric Convergence Rates of Markov Chains, The Annals of Applied Probability 4 (1994), no. 4, 981 – 1011.  MR1304770S. P. Meyn and R. L. Tweedie, Computable Bounds for Geometric Convergence Rates of Markov Chains, The Annals of Applied Probability 4 (1994), no. 4, 981 – 1011.  MR1304770

65.

P. Monmarché, High-dimensional mcmc with a standard splitting scheme for the underdamped langevin diffusion., Electronic Journal of Statistics 15 (2021), no. 2, 4117–4166.  MR4309974P. Monmarché, High-dimensional mcmc with a standard splitting scheme for the underdamped langevin diffusion., Electronic Journal of Statistics 15 (2021), no. 2, 4117–4166.  MR4309974

66.

P. Monmarché, An entropic approach for hamiltonian monte carlo: the idealized case, arXiv preprint arXiv: 2209.13405 (2022).  MR4728169P. Monmarché, An entropic approach for hamiltonian monte carlo: the idealized case, arXiv preprint arXiv: 2209.13405 (2022).  MR4728169

67.

P. Monmarché, Hmc and langevin united in the unadjusted and convex case, arXiv preprint arXiv: 2202.00977 (2022).P. Monmarché, Hmc and langevin united in the unadjusted and convex case, arXiv preprint arXiv: 2202.00977 (2022).

68.

R. Montenegro and P. Tetali, Mathematical aspects of mixing times in Markov chains, Found. Trends Theor. Comput. Sci. 1 (2006), no. 3, x+121.  MR2341319R. Montenegro and P. Tetali, Mathematical aspects of mixing times in Markov chains, Found. Trends Theor. Comput. Sci. 1 (2006), no. 3, x+121.  MR2341319

69.

Y. Nesterov, Lectures on convex optimization, vol. 137, Springer, 2018.  MR3839649Y. Nesterov, Lectures on convex optimization, vol. 137, Springer, 2018.  MR3839649

70.

J. O’Leary and G. Wang, Metropolis-hastings transition kernel couplings, arXiv preprint arXiv: 2102.00366 (2021).J. O’Leary and G. Wang, Metropolis-hastings transition kernel couplings, arXiv preprint arXiv: 2102.00366 (2021).

71.

L. Riou-Durand and J. Vogrinc, Metropolis Adjusted Langevin Trajectories: a robust alternative to Hamiltonian Monte Carlo, arXiv preprint arXiv: 2202.13230 (2022).L. Riou-Durand and J. Vogrinc, Metropolis Adjusted Langevin Trajectories: a robust alternative to Hamiltonian Monte Carlo, arXiv preprint arXiv: 2202.13230 (2022).

72.

G. Roberts and J. Rosenthal, One-shot coupling for certain stochastic recursive sequences, Stochastic processes and their applications 99 (2002), no. 2, 195–208.  MR1901153G. Roberts and J. Rosenthal, One-shot coupling for certain stochastic recursive sequences, Stochastic processes and their applications 99 (2002), no. 2, 195–208.  MR1901153

73.

G. O. Roberts and J. S. Rosenthal, General state space Markov chains and MCMC algorithms, Probability Surveys 1 (2004), no. none, 20 – 71.  MR2095565G. O. Roberts and J. S. Rosenthal, General state space Markov chains and MCMC algorithms, Probability Surveys 1 (2004), no. none, 20 – 71.  MR2095565

74.

G. O. Roberts and R. L. Tweedie, Exponential convergence of Langevin distributions and their discrete approximations, Bernoulli 2 (1996), 341–363.  MR1440273G. O. Roberts and R. L. Tweedie, Exponential convergence of Langevin distributions and their discrete approximations, Bernoulli 2 (1996), 341–363.  MR1440273

75.

G. O. Roberts and R. L. Tweedie, Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms, Biometrika 1 (1996), 95–110.  MR1399158G. O. Roberts and R. L. Tweedie, Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms, Biometrika 1 (1996), 95–110.  MR1399158

76.

J. S. Rosenthal, Minorization conditions and convergence rates for markov chain monte carlo, Journal of the American Statistical Association 90 (1995), no. 430, 558–566.  MR1340509J. S. Rosenthal, Minorization conditions and convergence rates for markov chain monte carlo, Journal of the American Statistical Association 90 (1995), no. 430, 558–566.  MR1340509

77.

S. M. Rump, Estimates of the determinant of a perturbed identity matrix, Linear algebra and its applications 558 (2018), 101–107.  MR3854189S. M. Rump, Estimates of the determinant of a perturbed identity matrix, Linear algebra and its applications 558 (2018), 101–107.  MR3854189

78.

J. M. Sanz-Serna and K. C. Zygalakis, Wasserstein distance estimates for the distributions of numerical approximations to ergodic stochastic differential equations, The Journal of Machine Learning Research 22 (2021), no. 1, 11006–11042.  MR4329821J. M. Sanz-Serna and K. C. Zygalakis, Wasserstein distance estimates for the distributions of numerical approximations to ergodic stochastic differential equations, The Journal of Machine Learning Research 22 (2021), no. 1, 11006–11042.  MR4329821

79.

A. Scemama, T. Lelièvre, G. Stoltz, E. Cancés, and M. Caffarel, An efficient sampling algorithm for variational Monte Carlo, J Chem Phys 125 (2006), 114105.A. Scemama, T. Lelièvre, G. Stoltz, E. Cancés, and M. Caffarel, An efficient sampling algorithm for variational Monte Carlo, J Chem Phys 125 (2006), 114105.

80.

R. Shen and Y. T. Lee, The randomized midpoint method for log-concave sampling, Advances in Neural Information Processing Systems 32 (2019).R. Shen and Y. T. Lee, The randomized midpoint method for log-concave sampling, Advances in Neural Information Processing Systems 32 (2019).

81.

D. Talay, Stochastic Hamiltonian systems: Exponential convergence to the invariant measure, and discretization by the implicit Euler scheme, Markov Processes and Related Fields 8 (2002), 1–36.  MR1924934D. Talay, Stochastic Hamiltonian systems: Exponential convergence to the invariant measure, and discretization by the implicit Euler scheme, Markov Processes and Related Fields 8 (2002), 1–36.  MR1924934

82.

L. Tierney, A note on Metropolis-Hastings kernels for general state spaces, The Annals of Applied Probability 8 (1998), no. 1, 1 – 9.  MR1620401L. Tierney, A note on Metropolis-Hastings kernels for general state spaces, The Annals of Applied Probability 8 (1998), no. 1, 1 – 9.  MR1620401

83.

C. Villani, Optimal transport: old and new, vol. 338, Springer Science & Business Media, 2008.  MR2459454C. Villani, Optimal transport: old and new, vol. 338, Springer Science & Business Media, 2008.  MR2459454

84.

G. Wang, J. O’Leary, and P. Jacob, Maximal couplings of the metropolis-hastings algorithm, International Conference on Artificial Intelligence and Statistics, PMLR, 2021, pp. 1225–1233.G. Wang, J. O’Leary, and P. Jacob, Maximal couplings of the metropolis-hastings algorithm, International Conference on Artificial Intelligence and Statistics, PMLR, 2021, pp. 1225–1233.

85.

K. Wu, S. Schmidler, and Y. Chen, Minimax mixing time of the Metropolis-adjusted Langevin algorithm for log-concave sampling, J. Mach. Learn. Res. 23 (2022).  MR4577709K. Wu, S. Schmidler, and Y. Chen, Minimax mixing time of the Metropolis-adjusted Langevin algorithm for log-concave sampling, J. Mach. Learn. Res. 23 (2022).  MR4577709

86.

J. Yang and J. S. Rosenthal, Complexity results for MCMC derived from quantitative bounds, The Annals of Applied Probability 33 (2023), no. 2, 1459 – 1500.  MR4564431J. Yang and J. S. Rosenthal, Complexity results for MCMC derived from quantitative bounds, The Annals of Applied Probability 33 (2023), no. 2, 1459 – 1500.  MR4564431
Nawaf Bou-Rabee and Stefan Oberdörster "Mixing of Metropolis-adjusted Markov chains via couplings: The high acceptance regime," Electronic Journal of Probability 29(none), 1-27, (2024). https://doi.org/10.1214/24-EJP1150
Received: 15 January 2024; Accepted: 24 May 2024; Published: 2024
Vol.29 • 2024
Back to Top