Translator Disclaimer
2021 Rate of convergence for products of independent non-Hermitian random matrices
Jonas Jalowy
Author Affiliations +
Electron. J. Probab. 26: 1-24 (2021). DOI: 10.1214/21-EJP625

Abstract

We study the rate of convergence of the empirical spectral distribution of products of independent non-Hermitian random matrices to the power of the Circular Law. The distance to the deterministic limit distribution will be measured in terms of a uniform Kolmogorov-like distance. First, we prove that for products of Ginibre matrices, the optimal rate is given by O(1n), which is attained with overwhelming probability up to a logarithmic correction. Avoiding the edge, the rate of convergence of the mean empirical spectral distribution is even faster. Second, we show that also products of matrices with independent entries attain this optimal rate in the bulk up to a logarithmic factor. In the case of Ginibre matrices, we apply a saddlepoint approximation to a double contour integral representation of the density and in the case of matrices with independent entries we make use of techniques from local laws.

Funding Statement

Financial support by the German Research Foundation (DFG) through the IRTG 2235 is gratefully acknowledged.

Acknowledgments

The author would like to thank Thorsten Neuschel and Friedrich Götze for valuable suggestions, Mario Kieburg for helpful discussions regarding the saddle-point analysis and the referees for very useful feedback and remarks.

Citation

Download Citation

Jonas Jalowy. "Rate of convergence for products of independent non-Hermitian random matrices." Electron. J. Probab. 26 1 - 24, 2021. https://doi.org/10.1214/21-EJP625

Information

Received: 2 July 2020; Accepted: 3 April 2021; Published: 2021
First available in Project Euclid: 3 May 2021

arXiv: 1912.09300
Digital Object Identifier: 10.1214/21-EJP625

Subjects:
Primary: 60B20
Secondary: 41A25

JOURNAL ARTICLE
24 PAGES


SHARE
Vol.26 • 2021
Back to Top