Open Access
2021 Higher-order fluctuations in dense random graph models
Gursharn Kaur, Adrian Röllin
Author Affiliations +
Electron. J. Probab. 26: 1-36 (2021). DOI: 10.1214/21-EJP708
Abstract

Our main results are quantitative bounds in the multivariate normal approximation of centred subgraph counts in random graphs generated by a general graphon and independent vertex labels. We are interested in these statistics because they are key to understanding fluctuations of regular subgraph counts — a cornerstone of dense graph limit theory. We also identify the resulting limiting Gaussian stochastic measures by means of the theory of generalised U-statistics and Gaussian Hilbert spaces, which we think is a suitable framework to describe and understand higher-order fluctuations in dense random graph models. With this article, we believe we answer the question “What is the central limit theorem of dense graph limit theory?”. We complement the theory with some statistical applications to illustrate the use of centred subgraph counts in network modelling.

References

1.

S. Athreya, F. den Hollander, and A. Röllin (2019). Graphon-valued stochastic processes from population genetics. arXiv preprint  1908.06241.  MR4312844S. Athreya, F. den Hollander, and A. Röllin (2019). Graphon-valued stochastic processes from population genetics. arXiv preprint  1908.06241.  MR4312844

2.

A. D. Barbour, M. Karoński, and A. Ruciński (1989). A central limit theorem for decomposable random variables with applications to random graphs. J. Combin. Theory Ser. B 47, 125–145.  MR1047781A. D. Barbour, M. Karoński, and A. Ruciński (1989). A central limit theorem for decomposable random variables with applications to random graphs. J. Combin. Theory Ser. B 47, 125–145.  MR1047781

3.

V. Bentkus (2003). On the dependence of the Berry-Esseen bound on dimension. J. Statist. Plann. Inference 113, 385–402.  MR1965117V. Bentkus (2003). On the dependence of the Berry-Esseen bound on dimension. J. Statist. Plann. Inference 113, 385–402.  MR1965117

4.

C. Biernacki, G. Celeux, and G. Govaert (2000). Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Pattern Anal. Mach. Intell. 22, 719–725.C. Biernacki, G. Celeux, and G. Govaert (2000). Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Pattern Anal. Mach. Intell. 22, 719–725.

5.

B. Bollobás and O. Riordan (2009). Metrics for sparse graphs. In Surveys in Combinatorics 2009, Cambridge University Press, vol. 365 of London Math. Soc. Lecture Note Ser., 211–287.  MR2588543B. Bollobás and O. Riordan (2009). Metrics for sparse graphs. In Surveys in Combinatorics 2009, Cambridge University Press, vol. 365 of London Math. Soc. Lecture Note Ser., 211–287.  MR2588543

6.

C. Borgs, J. T. Chayes, H. Cohn, and N. Holden (2017). Sparse exchangeable graphs and their limits via graphon processes. J. Mach. Learn. Res. 18, 7740–7810.  MR3827098C. Borgs, J. T. Chayes, H. Cohn, and N. Holden (2017). Sparse exchangeable graphs and their limits via graphon processes. J. Mach. Learn. Res. 18, 7740–7810.  MR3827098

7.

C. Borgs, J. T. Chayes, H. Cohn, and Y. Zhao (2014a). An Lptheory of sparse graph convergence I: limits, sparse random graph models, and power law distributions. arXiv preprint  1401.2906.  MR3758733C. Borgs, J. T. Chayes, H. Cohn, and Y. Zhao (2014a). An Lptheory of sparse graph convergence I: limits, sparse random graph models, and power law distributions. arXiv preprint  1401.2906.  MR3758733

8.

C. Borgs, J. T. Chayes, H. Cohn, and Y. Zhao (2014b). An Lptheory of sparse graph convergence II: LD convergence, quotients, and right convergence. arXiv preprint  1408.0744.  MR3758733C. Borgs, J. T. Chayes, H. Cohn, and Y. Zhao (2014b). An Lptheory of sparse graph convergence II: LD convergence, quotients, and right convergence. arXiv preprint  1408.0744.  MR3758733

9.

S. Bubeck, J. Ding, R. Eldan, and M. Z. Rácz (2016). Testing for high-dimensional geometry in random graphs. Random Struct. Algorithms 49, 503–532.  MR3545825S. Bubeck, J. Ding, R. Eldan, and M. Z. Rácz (2016). Testing for high-dimensional geometry in random graphs. Random Struct. Algorithms 49, 503–532.  MR3545825

10.

F. Caron and E. B. Fox (2017). Sparse graphs using exchangeable random measures. J. Roy. Statist. Soc. Ser. B 79, 1295–1366.  MR3731666F. Caron and E. B. Fox (2017). Sparse graphs using exchangeable random measures. J. Roy. Statist. Soc. Ser. B 79, 1295–1366.  MR3731666

11.

Chatterjee, A., and Bhattacharya, B. B. (2021). Fluctuations of Subgraph Counts in Random Graphons. arXiv preprint  2104.07259.Chatterjee, A., and Bhattacharya, B. B. (2021). Fluctuations of Subgraph Counts in Random Graphons. arXiv preprint  2104.07259.

12.

L. H. Y. Chen and A. Röllin (2010). Stein couplings for normal approximation. arXiv preprint  1003.6039.L. H. Y. Chen and A. Röllin (2010). Stein couplings for normal approximation. arXiv preprint  1003.6039.

13.

G. Di Nunno, B. K. Øksendal, and F. Proske (2009). Malliavin calculus for Lévy processes with applications to finance. vol. 2, Springer.  MR2460554G. Di Nunno, B. K. Øksendal, and F. Proske (2009). Malliavin calculus for Lévy processes with applications to finance. vol. 2, Springer.  MR2460554

14.

P. Diaconis and S. Janson (2008). Graph limits and exchangeable random graphs. Rend. Mat. Appl. (7) 28, 33–61.  MR2463439P. Diaconis and S. Janson (2008). Graph limits and exchangeable random graphs. Rend. Mat. Appl. (7) 28, 33–61.  MR2463439

15.

X. Fang and A. Röllin (2015). Rates of convergence for multivariate normal approximation with applications to dense graphs and doubly indexed permutation statistics. Bernoulli 21, 2157–2189.  MR3378463X. Fang and A. Röllin (2015). Rates of convergence for multivariate normal approximation with applications to dense graphs and doubly indexed permutation statistics. Bernoulli 21, 2157–2189.  MR3378463

16.

T. Funke and T. Becker (2019). Stochastic block models: A comparison of variants and inference methods. PLoS one 14.T. Funke and T. Becker (2019). Stochastic block models: A comparison of variants and inference methods. PLoS one 14.

17.

H. L. Gan, A. Röllin, and N. Ross (2017). Dirichlet approximation of equilibrium distributions in Cannings models with mutation. Adv. Appl. Probab. 49, 927–959.  MR3694323H. L. Gan, A. Röllin, and N. Ross (2017). Dirichlet approximation of equilibrium distributions in Cannings models with mutation. Adv. Appl. Probab. 49, 927–959.  MR3694323

18.

C. Gao and J. Lafferty (2017a). Testing for global network structure using small subgraph statistics. arXiv preprint  1710.00862.C. Gao and J. Lafferty (2017a). Testing for global network structure using small subgraph statistics. arXiv preprint  1710.00862.

19.

C. Gao and J. Lafferty (2017b). Testing network structure using relations between small subgraph probabilities. arXiv preprint  1704.06742.C. Gao and J. Lafferty (2017b). Testing network structure using relations between small subgraph probabilities. arXiv preprint  1704.06742.

20.

J. Hladký, C. Pelekis, and M. Šileikis (2019). A limit theorem for small cliques in inhomogeneous random graphs. arXiv preprint  1903.10570.  MR4313198J. Hladký, C. Pelekis, and M. Šileikis (2019). A limit theorem for small cliques in inhomogeneous random graphs. arXiv preprint  1903.10570.  MR4313198

21.

C. Hoppen, Y. Kohayakawa, C. G. Moreira, and R. M. Sampaio (2011). Limits of permutation sequences through permutation regularity. arXiv preprint  1106.1663.  MR2995721C. Hoppen, Y. Kohayakawa, C. G. Moreira, and R. M. Sampaio (2011). Limits of permutation sequences through permutation regularity. arXiv preprint  1106.1663.  MR2995721

22.

S. Janson (1994). Coupling and Poisson approximation. Acta Appl. Math. 34, 7–15.  MR1273843S. Janson (1994). Coupling and Poisson approximation. Acta Appl. Math. 34, 7–15.  MR1273843

23.

S. Janson (1997). Gaussian Hilbert Spaces. Cambridge University Press.  MR1474726S. Janson (1997). Gaussian Hilbert Spaces. Cambridge University Press.  MR1474726

24.

S. Janson and K. Nowicki (1991). The asymptotic distributions of generalized U-statistics with applications to random graphs. Probab. Theory Related Fields 90, 341–375.  MR1133371S. Janson and K. Nowicki (1991). The asymptotic distributions of generalized U-statistics with applications to random graphs. Probab. Theory Related Fields 90, 341–375.  MR1133371

25.

K. Krokowski, A. Reichenbachs, and C. Thäle (2017). Discrete Malliavin-Stein method: Berry-Esseen bounds for random graphs and percolation. Ann. Probab. 45.  MR3630293K. Krokowski, A. Reichenbachs, and C. Thäle (2017). Discrete Malliavin-Stein method: Berry-Esseen bounds for random graphs and percolation. Ann. Probab. 45.  MR3630293

26.

L. Lovász (2012). Large Networks and Graph Limits. American Mathematical Society.  MR3012035L. Lovász (2012). Large Networks and Graph Limits. American Mathematical Society.  MR3012035

27.

L. Lovász and B. Szegedy (2006). Limits of dense graph sequences. J. Combin. Theory Ser. B 96, 933–957.  MR2274085L. Lovász and B. Szegedy (2006). Limits of dense graph sequences. J. Combin. Theory Ser. B 96, 933–957.  MR2274085

28.

L. Lovász and B. Szegedy (2011). Finitely forcible graphons. Journal of Combinatorial Theory, Series B 101, 269 – 301.  MR2802882L. Lovász and B. Szegedy (2011). Finitely forcible graphons. Journal of Combinatorial Theory, Series B 101, 269 – 301.  MR2802882

29.

P. A. Maugis (2020). Central limit theorems for local network statistics. arXiv preprint  2006.15738.P. A. Maugis (2020). Central limit theorems for local network statistics. arXiv preprint  2006.15738.

30.

E. Meckes (2009). On Stein’s method for multivariate normal approximation. In High dimensional probability V: the Luminy volume, Beachwood, OH: Inst. Math. Statist., vol. 5 of Inst. Math. Stat. Collect., 153–178.  MR2797946E. Meckes (2009). On Stein’s method for multivariate normal approximation. In High dimensional probability V: the Luminy volume, Beachwood, OH: Inst. Math. Statist., vol. 5 of Inst. Math. Stat. Collect., 153–178.  MR2797946

31.

I. Nourdin and G. Peccati (2012). Normal approximation with Malliavin calculus: from Stein’s method to universality. vol. 192 of Cambridge Tracts in Mathematics, Cambridge: Cambridge University Press.  MR2962301I. Nourdin and G. Peccati (2012). Normal approximation with Malliavin calculus: from Stein’s method to universality. vol. 192 of Cambridge Tracts in Mathematics, Cambridge: Cambridge University Press.  MR2962301

32.

D. Nualart (2006). The Malliavin calculus and related topics. vol. 1995, Springer.  MR1344217D. Nualart (2006). The Malliavin calculus and related topics. vol. 1995, Springer.  MR1344217

33.

D. Nualart and G. Peccati (2005). Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab.  MR2118863D. Nualart and G. Peccati (2005). Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab.  MR2118863

34.

L. Ospina-Forero, C. M. Deane, and G. Reinert (2019). Assessment of model fit via network comparison methods based on subgraph counts. J. Complex Netw. 7, 226–253.L. Ospina-Forero, C. M. Deane, and G. Reinert (2019). Assessment of model fit via network comparison methods based on subgraph counts. J. Complex Netw. 7, 226–253.

35.

N. Privault and G. Serafin (2020). Normal approximation for sums of weighted U-statistics — application to Kolmogorov bounds in random subgraph counting. Bernoulli 26, 587–615.  MR4036045N. Privault and G. Serafin (2020). Normal approximation for sums of weighted U-statistics — application to Kolmogorov bounds in random subgraph counting. Bernoulli 26, 587–615.  MR4036045

36.

B. Ráth (2012). Time evolution of dense multigraph limits under edge-conservative preferential attachment dynamics. Random Struct. Algorithms 41, 365–390.  MR2967178B. Ráth (2012). Time evolution of dense multigraph limits under edge-conservative preferential attachment dynamics. Random Struct. Algorithms 41, 365–390.  MR2967178

37.

B. Ráth and L. Szakács (2012). Multigraph limit of the dense configuration model and the preferential attachment graph. Acta Math. Hungar. 136, 196–221.  MR2945218B. Ráth and L. Szakács (2012). Multigraph limit of the dense configuration model and the preferential attachment graph. Acta Math. Hungar. 136, 196–221.  MR2945218

38.

G. Reinert and A. Röllin (2010). Random subgraph counts and U-statistics: Multivariate normal approximation via exchangeable pairs and embedding. J. Appl. Probab. 47, 378–393.  MR2668495G. Reinert and A. Röllin (2010). Random subgraph counts and U-statistics: Multivariate normal approximation via exchangeable pairs and embedding. J. Appl. Probab. 47, 378–393.  MR2668495

39.

A. Röllin (2017). Kolmogorov bounds for the normal approximation of the number of triangles in the Erdős-Rényi random graph. arXiv preprint  1704.00410.A. Röllin (2017). Kolmogorov bounds for the normal approximation of the number of triangles in the Erdős-Rényi random graph. arXiv preprint  1704.00410.

40.

A. Röllin and N. Ross (2015). Local limit theorems via Landau-Kolmogorov inequalities. Bernoulli 21, 851–880.  MR3338649A. Röllin and N. Ross (2015). Local limit theorems via Landau-Kolmogorov inequalities. Bernoulli 21, 851–880.  MR3338649
Gursharn Kaur and Adrian Röllin "Higher-order fluctuations in dense random graph models," Electronic Journal of Probability 26(none), 1-36, (2021). https://doi.org/10.1214/21-EJP708
Received: 14 September 2020; Accepted: 21 September 2021; Published: 2021
Vol.26 • 2021
Back to Top