Abstract
We study the evolution of a random walker on a conservative dynamic random environment composed of independent particles performing simple symmetric random walks, generalizing results of [16] to higher dimensions and more general transition kernels without the assumption of uniform ellipticity or nearest-neighbour jumps. Specifically, we obtain a strong law of large numbers, a functional central limit theorem and large deviation estimates for the position of the random walker under the annealed law in a high density regime. The main obstacle is the intrinsic lack of monotonicity in higher-dimensional, non-nearest neighbour settings. Here we develop more general renormalization and renewal schemes that allow us to overcome this issue. As a second application of our methods, we provide an alternative proof of the ballistic behaviour of the front of (the discrete-time version of) the infection model introduced in [23].
Citation
Oriane Blondel. Marcelo R. Hilário. Renato S. dos Santos. Vladas Sidoravicius. Augusto Teixeira. "Random walk on random walks: higher dimensions." Electron. J. Probab. 24 1 - 33, 2019. https://doi.org/10.1214/19-EJP337
Information