Open Access
2018 The Schrödinger equation with spatial white noise potential
Arnaud Debussche, Hendrik Weber
Electron. J. Probab. 23: 1-16 (2018). DOI: 10.1214/18-EJP143
Abstract

We consider the linear and nonlinear Schrödinger equation with a spatial white noise as a potential over the two dimensional torus. We prove existence and uniqueness of solutions to an initial value problem for suitable initial data. Our construction is based on a change of unknown originally used in [13] and conserved quantities.

References

1.

[1] R. Allez and K. Chouk, The continuous Anderson Hamiltonian in dimension two,  arXiv:1511.02718v21511.02718v2[1] R. Allez and K. Chouk, The continuous Anderson Hamiltonian in dimension two,  arXiv:1511.02718v21511.02718v2

2.

[2] H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier analysis and nonlinear partial differential equations, vol. 343 of Grundlehren der Mathematischen Wissenschaften. Springer, Heidelberg, 2011. 1227.35004[2] H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier analysis and nonlinear partial differential equations, vol. 343 of Grundlehren der Mathematischen Wissenschaften. Springer, Heidelberg, 2011. 1227.35004

3.

[3] J. Bourgain Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, Comm. Math. Phys. 176 (1996), no. 2, pp. 421–445[3] J. Bourgain Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, Comm. Math. Phys. 176 (1996), no. 2, pp. 421–445

4.

[4] J. Bourgain, Refinements of Strichartz inequality and applications to 2D-NLS with critical nonlinearity, IMRN, 5, p. 253–283, 1998. 0917.35126 10.1155/S1073792898000191[4] J. Bourgain, Refinements of Strichartz inequality and applications to 2D-NLS with critical nonlinearity, IMRN, 5, p. 253–283, 1998. 0917.35126 10.1155/S1073792898000191

5.

[5] H. Brezis and T. Gallouet Nonlinear Schrödinger evolution equations, Nonlinear Analysis, Theory, Methods & Applications, vol. 4, no 4, pp. 677–681.[5] H. Brezis and T. Gallouet Nonlinear Schrödinger evolution equations, Nonlinear Analysis, Theory, Methods & Applications, vol. 4, no 4, pp. 677–681.

6.

[6] T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, American Mathematical Society, Courant Institute of Mathematical Sciences, 2003. MR2002047[6] T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, American Mathematical Society, Courant Institute of Mathematical Sciences, 2003. MR2002047

7.

[7] T. Cazenave and A. Haraux, An introduction to semilinear evolution equations, Oxford Lecture Series in Mathematics and its Applications, 1998. 0926.35049[7] T. Cazenave and A. Haraux, An introduction to semilinear evolution equations, Oxford Lecture Series in Mathematics and its Applications, 1998. 0926.35049

8.

[8] H. Chihara, Gain of regularity for semilinear Schrödinger equations, Math. Ann. 315, no. 4, p. 529–567, 1999.[8] H. Chihara, Gain of regularity for semilinear Schrödinger equations, Math. Ann. 315, no. 4, p. 529–567, 1999.

9.

[9] C. Conti, Solitonization of the Anderson localization, Phys. Rev. A, 86, 2012.[9] C. Conti, Solitonization of the Anderson localization, Phys. Rev. A, 86, 2012.

10.

[10] M. B. Erdogan and N. Tzirakis, Talbot effect for the cubic nonlinear Schrödinger equation on the torus, Math. Res. Let., 20, no. 6, p. 1081–1090, 2013.[10] M. B. Erdogan and N. Tzirakis, Talbot effect for the cubic nonlinear Schrödinger equation on the torus, Math. Res. Let., 20, no. 6, p. 1081–1090, 2013.

11.

[11] M. B. Erdogan, T. B. Gurel and N. Tzirakis, Smoothing for the fractional Schrödinger equation on the torus and the real line,  arXiv:1703.00946 1703.00946[11] M. B. Erdogan, T. B. Gurel and N. Tzirakis, Smoothing for the fractional Schrödinger equation on the torus and the real line,  arXiv:1703.00946 1703.00946

12.

[12] N. Ghofraniha, S. Gentilini, V. Folli, E. DelRe and C. Conti, Shock waves in disordered media, Phys. Rev. Letter, 109, 2012.[12] N. Ghofraniha, S. Gentilini, V. Folli, E. DelRe and C. Conti, Shock waves in disordered media, Phys. Rev. Letter, 109, 2012.

13.

[13] M. Hairer and C. Labbé, A simple construction of the continuum parabolic anderson model on $\mathbb{R} ^2$. Electron. Commun. Probab. 20 (2015), no. 43, pp. 1–11[13] M. Hairer and C. Labbé, A simple construction of the continuum parabolic anderson model on $\mathbb{R} ^2$. Electron. Commun. Probab. 20 (2015), no. 43, pp. 1–11

14.

[14] A. Ionescu and C.E. Kenig, Well-posedness and local smoothing of solutions of Schrödinger equations, Math. Res. Lett. 12, no. 2–3, p. 193–205, 2005.[14] A. Ionescu and C.E. Kenig, Well-posedness and local smoothing of solutions of Schrödinger equations, Math. Res. Lett. 12, no. 2–3, p. 193–205, 2005.

15.

[15] T. Kappeler, B. Schaad, and P. Topalov, Scattering-like phenomena of the periodic defocusing NLS equation, preprint,  arXiv:1505.073941505.07394 1390.35330 10.4310/MRL.2017.v24.n3.a9[15] T. Kappeler, B. Schaad, and P. Topalov, Scattering-like phenomena of the periodic defocusing NLS equation, preprint,  arXiv:1505.073941505.07394 1390.35330 10.4310/MRL.2017.v24.n3.a9

16.

[16] C.E. Kenig, G. Ponce and L. Vega, Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations, Invent. Math. 134, no. 3, p. 489–545, 1998. 0928.35158 10.1007/s002220050272[16] C.E. Kenig, G. Ponce and L. Vega, Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations, Invent. Math. 134, no. 3, p. 489–545, 1998. 0928.35158 10.1007/s002220050272

17.

[17] S. Keraani and A. Vargas A smoothing property for the $L^2$ critical NLS equations and an application to blowup theory, Annales de l’Institut Henri Poincare (C) Non Linear Analysis Volume 26, Issue 3, p. 745–762, 2009. 1178.35313 10.1016/j.anihpc.2008.03.001[17] S. Keraani and A. Vargas A smoothing property for the $L^2$ critical NLS equations and an application to blowup theory, Annales de l’Institut Henri Poincare (C) Non Linear Analysis Volume 26, Issue 3, p. 745–762, 2009. 1178.35313 10.1016/j.anihpc.2008.03.001

18.

[18] H. Mizutani, Global-in-time smoothing effects for Schrödinger equations with inverse- square potentials, Proc. Amer. Math. Soc. 146, no. 1, p. 295–307, 2018. 1386.35367 10.1090/proc/13729[18] H. Mizutani, Global-in-time smoothing effects for Schrödinger equations with inverse- square potentials, Proc. Amer. Math. Soc. 146, no. 1, p. 295–307, 2018. 1386.35367 10.1090/proc/13729
Arnaud Debussche and Hendrik Weber "The Schrödinger equation with spatial white noise potential," Electronic Journal of Probability 23(none), 1-16, (2018). https://doi.org/10.1214/18-EJP143
Received: 12 December 2016; Accepted: 16 January 2018; Published: 2018
Vol.23 • 2018
Back to Top