Open Access
2018 Stochastic differential equations in a scale of Hilbert spaces
Alexei Daletskii
Electron. J. Probab. 23: 1-15 (2018). DOI: 10.1214/18-EJP247
Abstract

A stochastic differential equation with coefficients defined in a scale of Hilbert spaces is considered. The existence and uniqueness of finite time solutions is proved by an extension of the Ovsyannikov method. This result is applied to a system of equations describing non-equilibrium stochastic dynamics of (real-valued) spins of an infinite particle system on a typical realization of a Poisson or Gibbs point process in ${\mathbb{R} }^{n}$.

References

1.

[1] S. Albeverio, A. Daletskii, Yu. Kondratiev, Stochastic equations and Dirichlet operators on product manifolds. Infinite Dimensional Analysis, Quantum Probability and Related Topics 6 (2003), 455-488. 1049.60055 10.1142/S0219025703001298[1] S. Albeverio, A. Daletskii, Yu. Kondratiev, Stochastic equations and Dirichlet operators on product manifolds. Infinite Dimensional Analysis, Quantum Probability and Related Topics 6 (2003), 455-488. 1049.60055 10.1142/S0219025703001298

2.

[2] S. Albeverio, A. Daletskii, Yu. Kondratiev, Stochastic analysis on product manifolds: Dirichlet operators on differential forms. J. Funct. Anal. 176 (2000), no. 2, 280-316. 0970.58020 10.1006/jfan.2000.3629[2] S. Albeverio, A. Daletskii, Yu. Kondratiev, Stochastic analysis on product manifolds: Dirichlet operators on differential forms. J. Funct. Anal. 176 (2000), no. 2, 280-316. 0970.58020 10.1006/jfan.2000.3629

3.

[3] S. Albeverio, Yu. Kondratiev, M. Röckner, Analysis and geometry on configuration spaces: The Gibbsian case, J. Funct. Anal. 157 (1998), 242–291. 0931.58019 10.1006/jfan.1997.3215[3] S. Albeverio, Yu. Kondratiev, M. Röckner, Analysis and geometry on configuration spaces: The Gibbsian case, J. Funct. Anal. 157 (1998), 242–291. 0931.58019 10.1006/jfan.1997.3215

4.

[4] R. Barostichi, A. Himonas, G. Petronilho, Autonomous Ovsyannikov theorem and applications to nonlocal evolution equations and systems, J. Funct. Anal. 270 (2016), 330–358. 1331.35299 10.1016/j.jfa.2015.06.008[4] R. Barostichi, A. Himonas, G. Petronilho, Autonomous Ovsyannikov theorem and applications to nonlocal evolution equations and systems, J. Funct. Anal. 270 (2016), 330–358. 1331.35299 10.1016/j.jfa.2015.06.008

5.

[5] T. Bodineau, I. Gallagher, L. Saint-Raymond, The Brownian motion as the limit of a deterministic system of hard-spheres, Invent. Math. 203 (2016), 493–553. 1337.35107 10.1007/s00222-015-0593-9[5] T. Bodineau, I. Gallagher, L. Saint-Raymond, The Brownian motion as the limit of a deterministic system of hard-spheres, Invent. Math. 203 (2016), 493–553. 1337.35107 10.1007/s00222-015-0593-9

6.

[6] A. Bovier, Statistical Mechanics of Disordered Systems. A Mathematical Perspective (Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2006).[6] A. Bovier, Statistical Mechanics of Disordered Systems. A Mathematical Perspective (Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2006).

7.

[7] D. Crisan, D. Holm, Wave breaking for the Stochastic Camassa-Holm equation, Physica D: Nonlinear Phenomena 376-377 (2018), 138-143. 1398.35305 10.1016/j.physd.2018.02.004[7] D. Crisan, D. Holm, Wave breaking for the Stochastic Camassa-Holm equation, Physica D: Nonlinear Phenomena 376-377 (2018), 138-143. 1398.35305 10.1016/j.physd.2018.02.004

8.

[8] R. Dalang, M. Dozzi, F. Flandoli, F. Russo (eds.), Stochastic Analysis: A Series of Lectures, Centre Interfacultaire Bernoulli, January–June 2012, Ecole Polytechnique Fédérale de Lausanne, Switzerland, Progress in Probability (2015), Birkhauser.[8] R. Dalang, M. Dozzi, F. Flandoli, F. Russo (eds.), Stochastic Analysis: A Series of Lectures, Centre Interfacultaire Bernoulli, January–June 2012, Ecole Polytechnique Fédérale de Lausanne, Switzerland, Progress in Probability (2015), Birkhauser.

9.

[9] A. Daletskii, D. Finkelshtein, Non-equilibrium particle dynamics with unbounded number of interacting neighbors, J. Stat. Phys. (2018), published on-line  http://link.springer.com/article/10.1007/s10955-018-2159-x06997202 10.1007/s10955-018-2159-x[9] A. Daletskii, D. Finkelshtein, Non-equilibrium particle dynamics with unbounded number of interacting neighbors, J. Stat. Phys. (2018), published on-line  http://link.springer.com/article/10.1007/s10955-018-2159-x06997202 10.1007/s10955-018-2159-x

10.

[10] A. Daletskii, Yu. Kondratiev, Yu. Kozitsky, T. Pasurek, Gibbs states on random configurations, J. Math. Phys. 55 (2014), 083513. 1301.82021 10.1063/1.4891992[10] A. Daletskii, Yu. Kondratiev, Yu. Kozitsky, T. Pasurek, Gibbs states on random configurations, J. Math. Phys. 55 (2014), 083513. 1301.82021 10.1063/1.4891992

11.

[11] A. Daletskii, Yu. Kondratiev, Yu. Kozitsky, T. Pasurek, Phase Transitions in a quenched amorphous ferromagnet, J. Stat. Phys. 156 (2014), 156-176. 1298.82074 10.1007/s10955-014-0996-9[11] A. Daletskii, Yu. Kondratiev, Yu. Kozitsky, T. Pasurek, Phase Transitions in a quenched amorphous ferromagnet, J. Stat. Phys. 156 (2014), 156-176. 1298.82074 10.1007/s10955-014-0996-9

12.

[12] D. J. Daley, D. Vere-Jones, An Introduction to the Theory of Point Processes, Volume I: Elementary Theory and Methods, 2nd edition, Springer, New York, 2003.[12] D. J. Daley, D. Vere-Jones, An Introduction to the Theory of Point Processes, Volume I: Elementary Theory and Methods, 2nd edition, Springer, New York, 2003.

13.

[13] G. Da Prato, J. Zabczyk, Stochastic Differential Equations in Infinite Dimensions, Cambridge 1992. 0761.60052[13] G. Da Prato, J. Zabczyk, Stochastic Differential Equations in Infinite Dimensions, Cambridge 1992. 0761.60052

14.

[14] G. Da Prato, J. Zabczyk, Ergodicity for Infinite Dimensional Systems, London Mathematical Society Lecture Note Series 229, University Press, Cambridge, 1996. 0849.60052[14] G. Da Prato, J. Zabczyk, Ergodicity for Infinite Dimensional Systems, London Mathematical Society Lecture Note Series 229, University Press, Cambridge, 1996. 0849.60052

15.

[15] K. Deimling, Ordinary differential equations in Banach spaces, Lecture Notes in Mathematics 596, Springer 1977.[15] K. Deimling, Ordinary differential equations in Banach spaces, Lecture Notes in Mathematics 596, Springer 1977.

16.

[16] D. Finkelshtein, Around Ovsyannikov’s method, Methods of Functional Analysis and Topology 21 (2015), No. 2, 134-150. 1340.35177[16] D. Finkelshtein, Around Ovsyannikov’s method, Methods of Functional Analysis and Topology 21 (2015), No. 2, 134-150. 1340.35177

17.

[17] D. Finkelshtein, Yu. Kondratiev, O. Kutoviy, Semigroup approach to birth-and-death stochastic dynamics in continuum, J. Funct. Anal. 262 (2012), 1274-1308. 1250.47090 10.1016/j.jfa.2011.11.005[17] D. Finkelshtein, Yu. Kondratiev, O. Kutoviy, Semigroup approach to birth-and-death stochastic dynamics in continuum, J. Funct. Anal. 262 (2012), 1274-1308. 1250.47090 10.1016/j.jfa.2011.11.005

18.

[18] J. Fritz, C. Liverani, S. Olla, Reversibility in Infinite Hamiltonian Systems with Conservative Noise, Commun. Math. Phys. 189 (1997), 481 - 496. 0893.70011 10.1007/s002200050212[18] J. Fritz, C. Liverani, S. Olla, Reversibility in Infinite Hamiltonian Systems with Conservative Noise, Commun. Math. Phys. 189 (1997), 481 - 496. 0893.70011 10.1007/s002200050212

19.

[19] J. Inglis, M. Neklyudov, B. Zegarliński, Ergodicity for infinite particle systems with locally conserved quantities, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 15 (2012), No. 1, 1250005. 1268.60120 10.1142/S0219025712500051[19] J. Inglis, M. Neklyudov, B. Zegarliński, Ergodicity for infinite particle systems with locally conserved quantities, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 15 (2012), No. 1, 1250005. 1268.60120 10.1142/S0219025712500051

20.

[20] G. Kallianpur, I. Mitoma, R. L. Wolpert, Diffusion equations in duals of nuclear spaces, Stochastics and Stochastic Reports, 29 (1990), No. 2, 285-329. 0702.60056 10.1080/17442509008833618[20] G. Kallianpur, I. Mitoma, R. L. Wolpert, Diffusion equations in duals of nuclear spaces, Stochastics and Stochastic Reports, 29 (1990), No. 2, 285-329. 0702.60056 10.1080/17442509008833618

21.

[21] G. Kallianpur, Jie Xiong, Stochastic differential equations in infinite dimensional spaces, Lecture notes-monograph series 26, Institute of Mathematical Statistics 1995.[21] G. Kallianpur, Jie Xiong, Stochastic differential equations in infinite dimensional spaces, Lecture notes-monograph series 26, Institute of Mathematical Statistics 1995.

22.

[22] D. Klein and W. S. Yang, A characterization of first order phase transitions for superstable interactions in classical statistical mechanics, J. Stat. Phys. 71 (1993), 1043-1062. 0935.82519 10.1007/BF01049960[22] D. Klein and W. S. Yang, A characterization of first order phase transitions for superstable interactions in classical statistical mechanics, J. Stat. Phys. 71 (1993), 1043-1062. 0935.82519 10.1007/BF01049960

23.

[23] O. Lanford, Time evolution of large classical systems, Lecture notes in physics 38, pp. 1-111, Springer (1975)[23] O. Lanford, Time evolution of large classical systems, Lecture notes in physics 38, pp. 1-111, Springer (1975)

24.

[24] O. Lanford, J. Lebowitz, E. Lieb, Time Evolution of Infinite Anharmonic Systems, J. Stat. Phys. 16 (1977), No. 6, 453–461.[24] O. Lanford, J. Lebowitz, E. Lieb, Time Evolution of Infinite Anharmonic Systems, J. Stat. Phys. 16 (1977), No. 6, 453–461.

25.

[25] T. Nishida, A note on a theorem of Nirenberg, J. Differential Geometry 12 (1977), 629-633. 0368.35007 10.4310/jdg/1214434231 euclid.jdg/1214434231[25] T. Nishida, A note on a theorem of Nirenberg, J. Differential Geometry 12 (1977), 629-633. 0368.35007 10.4310/jdg/1214434231 euclid.jdg/1214434231

26.

[26] R. C. O’Handley, Modern Magnetic Materials: Principles and Applications, Wiley, 2000.[26] R. C. O’Handley, Modern Magnetic Materials: Principles and Applications, Wiley, 2000.

27.

[27] S. Romano and V. A. Zagrebnov, Orientational ordering transition in a continuous-spin ferrofluid, Phys. A 253 (1998), 483–497.[27] S. Romano and V. A. Zagrebnov, Orientational ordering transition in a continuous-spin ferrofluid, Phys. A 253 (1998), 483–497.

28.

[28] D. Ruelle, Superstable interactions in classical statistical mechanics, Commun. Math. Phys. 18 (1970), 127–159.[28] D. Ruelle, Superstable interactions in classical statistical mechanics, Commun. Math. Phys. 18 (1970), 127–159.

29.

[29] M. V. Safonov, The Abstract Cauchy-Kovalevskaya Theorem in a Weighted Banach Space, Comm. Pure Appl. Math. XLVIII (1995), 629-637. 0836.35004 10.1002/cpa.3160480604[29] M. V. Safonov, The Abstract Cauchy-Kovalevskaya Theorem in a Weighted Banach Space, Comm. Pure Appl. Math. XLVIII (1995), 629-637. 0836.35004 10.1002/cpa.3160480604
Alexei Daletskii "Stochastic differential equations in a scale of Hilbert spaces," Electronic Journal of Probability 23(none), 1-15, (2018). https://doi.org/10.1214/18-EJP247
Received: 13 May 2018; Accepted: 18 November 2018; Published: 2018
Vol.23 • 2018
Back to Top