Open Access
2018 Refined asymptotics for the composition of cyclic urns
Noela Müller, Ralph Neininger
Electron. J. Probab. 23: 1-20 (2018). DOI: 10.1214/18-EJP243
Abstract

A cyclic urn is an urn model for balls of types $0,\ldots ,m-1$. The urn starts at time zero with an initial configuration. Then, in each time step, first a ball is drawn from the urn uniformly and independently from the past. If its type is $j$, it is then returned to the urn together with a new ball of type $j+1 \mod m$. The case $m=2$ is the well-known Friedman urn. The composition vector, i.e., the vector of the numbers of balls of each type after $n$ steps is, after normalization, known to be asymptotically normal for $2\le m\le 6$. For $m\ge 7$ the normalized composition vector is known not to converge. However, there is an almost sure approximation by a periodic random vector.

In the present paper the asymptotic fluctuations around this periodic random vector are identified. We show that these fluctuations are asymptotically normal for all $7\le m\le 12$. For $m\ge 13$ we also find asymptotically normal fluctuations when normalizing in a more refined way. These fluctuations are of maximal dimension $m-1$ only when $6$ does not divide $m$. For $m$ being a multiple of $6$ the fluctuations are supported by a two-dimensional subspace.

References

1.

[1] Bindjeme, P. and Fill, J. A. (2012) Exact $L^2$-Distance from the Limit for QuickSort Key Comparisons (Extended abstract). DMTCS proc. AQ, 23rd International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA’12), 339–348. 1296.68039[1] Bindjeme, P. and Fill, J. A. (2012) Exact $L^2$-Distance from the Limit for QuickSort Key Comparisons (Extended abstract). DMTCS proc. AQ, 23rd International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA’12), 339–348. 1296.68039

2.

[2] Chauvin, B., Mailler, C. and Pouyanne, N. (2015) Smoothing equations for large Pólya urns. J. Theor. Probab. 28, 923–957. 1358.60010 10.1007/s10959-013-0530-z[2] Chauvin, B., Mailler, C. and Pouyanne, N. (2015) Smoothing equations for large Pólya urns. J. Theor. Probab. 28, 923–957. 1358.60010 10.1007/s10959-013-0530-z

3.

[3] Chern, H.-H., Fuchs, M. and Hwang, H.-K. (2007) Phase changes in random point quadtrees. ACM Trans. Algorithms 3, Art. 12, 51 pp.[3] Chern, H.-H., Fuchs, M. and Hwang, H.-K. (2007) Phase changes in random point quadtrees. ACM Trans. Algorithms 3, Art. 12, 51 pp.

4.

[4] Chern, H.-H. and Hwang, H.-K. (2001) Phase changes in random $m$-ary search trees and generalized quicksort. Random Structures Algorithms 19, 316–358.[4] Chern, H.-H. and Hwang, H.-K. (2001) Phase changes in random $m$-ary search trees and generalized quicksort. Random Structures Algorithms 19, 316–358.

5.

[5] Drmota, M., Janson, S. and Neininger, R. (2008) A functional limit theorem for the profile of search trees. Ann. Appl. Probab. 18, 288–333. 1143.68019 10.1214/07-AAP457 euclid.aoap/1199890024[5] Drmota, M., Janson, S. and Neininger, R. (2008) A functional limit theorem for the profile of search trees. Ann. Appl. Probab. 18, 288–333. 1143.68019 10.1214/07-AAP457 euclid.aoap/1199890024

6.

[6] Evans, S.N., Grübel, R. and Wakolbinger, A. (2012) Trickle-down processes and their boundaries. Electron. J. Probab. 17, 1-58. 1246.60100 10.1214/EJP.v17-1698[6] Evans, S.N., Grübel, R. and Wakolbinger, A. (2012) Trickle-down processes and their boundaries. Electron. J. Probab. 17, 1-58. 1246.60100 10.1214/EJP.v17-1698

7.

[7] Freedman, D. A. (1965) Bernard Friedman’s Urn. Ann. Math. Statist. 36, no. 3, 956–970. 0138.12003 10.1214/aoms/1177700068 euclid.aoms/1177700068[7] Freedman, D. A. (1965) Bernard Friedman’s Urn. Ann. Math. Statist. 36, no. 3, 956–970. 0138.12003 10.1214/aoms/1177700068 euclid.aoms/1177700068

8.

[8] Grübel, R. (2014) Search trees: Metric aspects and strong limit theorems. Ann. Appl. Probab. 24, 1269–1297. 1294.60009 10.1214/13-AAP948 euclid.aoap/1398258101[8] Grübel, R. (2014) Search trees: Metric aspects and strong limit theorems. Ann. Appl. Probab. 24, 1269–1297. 1294.60009 10.1214/13-AAP948 euclid.aoap/1398258101

9.

[9] Janson, S. (1983) Limit theorems for certain branching random walks on compact groups and homogeneous spaces. Ann. Probab. 11, 909–930. 0544.60022 10.1214/aop/1176993441 euclid.aop/1176993441[9] Janson, S. (1983) Limit theorems for certain branching random walks on compact groups and homogeneous spaces. Ann. Probab. 11, 909–930. 0544.60022 10.1214/aop/1176993441 euclid.aop/1176993441

10.

[10] Janson, S. (2004) Functional limit theorem for multitype branching processes and generalized Pólya urns. Stochastic Process. Appl. 110, 177–245.[10] Janson, S. (2004) Functional limit theorem for multitype branching processes and generalized Pólya urns. Stochastic Process. Appl. 110, 177–245.

11.

[11] Janson, S. (2006) Congruence properties of depths in some random trees. Alea 1, 347–366. 1104.60300[11] Janson, S. (2006) Congruence properties of depths in some random trees. Alea 1, 347–366. 1104.60300

12.

[12] Knape, M. and Neininger, R. (2014) Pólya Urns Via the Contraction Method. Combin. Probab. Comput. 23, 1148–1186. 1301.60012 10.1017/S0963548314000364[12] Knape, M. and Neininger, R. (2014) Pólya Urns Via the Contraction Method. Combin. Probab. Comput. 23, 1148–1186. 1301.60012 10.1017/S0963548314000364

13.

[13] Mahmoud, H. M. (1992) Evolution of Random Search Trees, John Wiley & Sons, New York.[13] Mahmoud, H. M. (1992) Evolution of Random Search Trees, John Wiley & Sons, New York.

14.

[14] Mailler, C. (2018) Balanced multicolour Pólya urns via smoothing systems analysis. ALEA - Latin American Journal of Probability and Mathematical Statistics XV, 375–408. 1390.60115 10.30757/ALEA.v15-16[14] Mailler, C. (2018) Balanced multicolour Pólya urns via smoothing systems analysis. ALEA - Latin American Journal of Probability and Mathematical Statistics XV, 375–408. 1390.60115 10.30757/ALEA.v15-16

15.

[15] Müller, N. S. and Neininger, R. (2016) The CLT Analogue for Cyclic Urns. Analytic Algorithmics and Combinatorics (ANALCO), 121–127.[15] Müller, N. S. and Neininger, R. (2016) The CLT Analogue for Cyclic Urns. Analytic Algorithmics and Combinatorics (ANALCO), 121–127.

16.

[16] Neininger, R. (2015) Refined Quicksort asymptotics. Random Structures Algorithms 46, 346–361. 1327.68086 10.1002/rsa.20497[16] Neininger, R. (2015) Refined Quicksort asymptotics. Random Structures Algorithms 46, 346–361. 1327.68086 10.1002/rsa.20497

17.

[17] Neininger, R. and Rüschendorf, L. (2004) A general limit theorem for recursive algorithms and combinatorial structures. Ann. Appl. Probab. 14, 378-418. 1041.60024 10.1214/aoap/1075828056 euclid.aoap/1075828056[17] Neininger, R. and Rüschendorf, L. (2004) A general limit theorem for recursive algorithms and combinatorial structures. Ann. Appl. Probab. 14, 378-418. 1041.60024 10.1214/aoap/1075828056 euclid.aoap/1075828056

18.

[18] Pouyanne, N. (2005) Classification of large Pólya-Eggenberger urns with regard to their asymptotics. 2005 International Conference on Analysis of Algorithms, 275–285 (electronic), Discrete Math. Theor. Comput. Sci. Proc., AD, Assoc. Discrete Math. Theor. Comput. Sci., Nancy1096.60007[18] Pouyanne, N. (2005) Classification of large Pólya-Eggenberger urns with regard to their asymptotics. 2005 International Conference on Analysis of Algorithms, 275–285 (electronic), Discrete Math. Theor. Comput. Sci. Proc., AD, Assoc. Discrete Math. Theor. Comput. Sci., Nancy1096.60007

19.

[19] Pouyanne, N. (2008) An algebraic approach to Pólya processes. Ann. Inst. Henri Poincaré Probab. Stat. 44, 293–323.[19] Pouyanne, N. (2008) An algebraic approach to Pólya processes. Ann. Inst. Henri Poincaré Probab. Stat. 44, 293–323.
Noela Müller and Ralph Neininger "Refined asymptotics for the composition of cyclic urns," Electronic Journal of Probability 23(none), 1-20, (2018). https://doi.org/10.1214/18-EJP243
Received: 30 January 2017; Accepted: 7 November 2018; Published: 2018
Vol.23 • 2018
Back to Top