Open Access
2018 Recurrence and transience of frogs with drift on $\mathbb{Z} ^d$
Christian Döbler, Nina Gantert, Thomas Höfelsauer, Serguei Popov, Felizitas Weidner
Electron. J. Probab. 23: 1-23 (2018). DOI: 10.1214/18-EJP216
Abstract

We study the frog model on $\mathbb{Z} ^d$ with drift in dimension $d \geq 2$ and establish the existence of transient and recurrent regimes depending on the transition probabilities. We focus on a model in which the particles perform nearest neighbour random walks which are balanced in all but one direction. This gives a model with two parameters. We present conditions on the parameters for recurrence and transience, revealing interesting differences between dimension $d=2$ and dimension $d \geq 3$. Our proofs make use of (refined) couplings with branching random walks for the transience, and with percolation for the recurrence.

References

1.

[1] O. S. M. Alves, F. P. Machado, and S. Yu. Popov, Phase transition for the frog model, Electron. J. Probab. 7 (2002), no. 16, 21.[1] O. S. M. Alves, F. P. Machado, and S. Yu. Popov, Phase transition for the frog model, Electron. J. Probab. 7 (2002), no. 16, 21.

2.

[2] O. S. M. Alves, F. P. Machado, and S. Yu. Popov, The shape theorem for the frog model, Ann. Appl. Probab. 12 (2002), no. 2, 533–546. 1013.60081 10.1214/aoap/1026915614 euclid.aoap/1026915614[2] O. S. M. Alves, F. P. Machado, and S. Yu. Popov, The shape theorem for the frog model, Ann. Appl. Probab. 12 (2002), no. 2, 533–546. 1013.60081 10.1214/aoap/1026915614 euclid.aoap/1026915614

3.

[3] B. Bollobás and O. Riordan, Percolation, Cambridge University Press, New York, 2006. MR2283880[3] B. Bollobás and O. Riordan, Percolation, Cambridge University Press, New York, 2006. MR2283880

4.

[4] C. Döbler and L. Pfeifroth, Recurrence for the frog model with drift on $\mathbb{Z} ^d$, Electron. Commun. Probab. 19 (2014), no. 79.[4] C. Döbler and L. Pfeifroth, Recurrence for the frog model with drift on $\mathbb{Z} ^d$, Electron. Commun. Probab. 19 (2014), no. 79.

5.

[5] L. R. Fontes, F. P. Machado, and A. Sarkar, The critical probability for the frog model is not a monotonic function of the graph, J. Appl. Probab. 41 (2004), no. 1, 292–298.[5] L. R. Fontes, F. P. Machado, and A. Sarkar, The critical probability for the frog model is not a monotonic function of the graph, J. Appl. Probab. 41 (2004), no. 1, 292–298.

6.

[6] N. Gantert and S. Müller, The critical branching Markov chain is transient, Markov Process. Related Fields 12 (2006), no. 4, 805–814.[6] N. Gantert and S. Müller, The critical branching Markov chain is transient, Markov Process. Related Fields 12 (2006), no. 4, 805–814.

7.

[7] N. Gantert and P. Schmidt, Recurrence for the frog model with drift on $\mathbb{Z} $, Markov Process. Related Fields 15 (2009), no. 1, 51–58.[7] N. Gantert and P. Schmidt, Recurrence for the frog model with drift on $\mathbb{Z} $, Markov Process. Related Fields 15 (2009), no. 1, 51–58.

8.

[8] A. Ghosh, S. Noren, and A. Roitershtein, On the range of the transient frog model on $\mathbb{Z} $, Adv. in Appl. Probab. 49 (2017), no. 2, 327–343. MR3668379 10.1017/apr.2017.3[8] A. Ghosh, S. Noren, and A. Roitershtein, On the range of the transient frog model on $\mathbb{Z} $, Adv. in Appl. Probab. 49 (2017), no. 2, 327–343. MR3668379 10.1017/apr.2017.3

9.

[9] T. Höfelsauer and F. Weidner, The speed of frogs with drift on $\mathbb Z$, Markov Process. Related Fields 22 (2016), no. 2, 379–392.[9] T. Höfelsauer and F. Weidner, The speed of frogs with drift on $\mathbb Z$, Markov Process. Related Fields 22 (2016), no. 2, 379–392.

10.

[10] C. Hoffman, T. Johnson, and M. Junge, Recurrence and transience for the frog model on trees, (2014).[10] C. Hoffman, T. Johnson, and M. Junge, Recurrence and transience for the frog model on trees, (2014).

11.

[11] C. Hoffman, T. Johnson, and M. Junge, From transience to recurrence with Poisson tree frogs, Ann. Appl. Probab. 26 (2016), no. 3, 1620–1635. 1345.60116 10.1214/15-AAP1127 euclid.aoap/1465905013[11] C. Hoffman, T. Johnson, and M. Junge, From transience to recurrence with Poisson tree frogs, Ann. Appl. Probab. 26 (2016), no. 3, 1620–1635. 1345.60116 10.1214/15-AAP1127 euclid.aoap/1465905013

12.

[12] T. Johnson and M. Junge, The critical density for the frog model is the degree of the tree, Electron. Commun. Probab. 21 (2016), 12 pp. MR3580451 10.1214/16-ECP29[12] T. Johnson and M. Junge, The critical density for the frog model is the degree of the tree, Electron. Commun. Probab. 21 (2016), 12 pp. MR3580451 10.1214/16-ECP29

13.

[13] T. Johnson and M. Junge, Stochastic orders and the frog model, (2016).[13] T. Johnson and M. Junge, Stochastic orders and the frog model, (2016).

14.

[14] E. Kosygina and M. P. W. Zerner, A zero-one law for recurrence and transience of frog processes, Probab. Theory Related Fields 168 (2017), no. 1-2, 317–346.[14] E. Kosygina and M. P. W. Zerner, A zero-one law for recurrence and transience of frog processes, Probab. Theory Related Fields 168 (2017), no. 1-2, 317–346.

15.

[15] G. Lawler and V. Limic, Random walk: a modern introduction, Cambridge Studies in Advanced Mathematics, vol. 123, Cambridge University Press, Cambridge, 2010.[15] G. Lawler and V. Limic, Random walk: a modern introduction, Cambridge Studies in Advanced Mathematics, vol. 123, Cambridge University Press, Cambridge, 2010.

16.

[16] É. Lebensztayn, F. P. Machado, and S. Yu. Popov, An improved upper bound for the critical probability of the frog model on homogeneous trees, J. Stat. Phys. 119 (2005), no. 1-2, 331–345.[16] É. Lebensztayn, F. P. Machado, and S. Yu. Popov, An improved upper bound for the critical probability of the frog model on homogeneous trees, J. Stat. Phys. 119 (2005), no. 1-2, 331–345.

17.

[17] S. Yu. Popov, Frogs in random environment, J. Statist. Phys. 102 (2001), no. 1-2, 191–201. 0972.60101 10.1023/A:1026516826875[17] S. Yu. Popov, Frogs in random environment, J. Statist. Phys. 102 (2001), no. 1-2, 191–201. 0972.60101 10.1023/A:1026516826875

18.

[18] J. Rosenberg, The nonhomogeneous frog model on $\mathbb{Z} $, (2017).[18] J. Rosenberg, The nonhomogeneous frog model on $\mathbb{Z} $, (2017).

19.

[19] A. Telcs and N.C. Wormald, Branching and tree indexed random walks on fractals, J. Appl. Probab. 36 (1999), no. 4, 999–1011. 0967.60059 10.1239/jap/1032374750 euclid.jap/1032374750[19] A. Telcs and N.C. Wormald, Branching and tree indexed random walks on fractals, J. Appl. Probab. 36 (1999), no. 4, 999–1011. 0967.60059 10.1239/jap/1032374750 euclid.jap/1032374750
Christian Döbler, Nina Gantert, Thomas Höfelsauer, Serguei Popov, and Felizitas Weidner "Recurrence and transience of frogs with drift on $\mathbb{Z} ^d$," Electronic Journal of Probability 23(none), 1-23, (2018). https://doi.org/10.1214/18-EJP216
Received: 1 September 2017; Accepted: 22 August 2018; Published: 2018
Vol.23 • 2018
Back to Top