Open Access
2018 Hydrodynamic limits for long-range asymmetric interacting particle systems
Sunder Sethuraman, Doron Shahar
Electron. J. Probab. 23: 1-54 (2018). DOI: 10.1214/18-EJP237
Abstract

We consider the hydrodynamic scaling behavior of the mass density with respect to a general class of mass conservative interacting particle systems on $\mathbb{Z} ^n$, where the jump rates are asymmetric and long-range of order $\|x\|^{-(n+\alpha )}$ for a particle displacement of order $\|x\|$. Two types of evolution equations are identified depending on the strength of the long-range asymmetry. When $0<\alpha <1$, we find a new integro-partial differential hydrodynamic equation, in an anomalous space-time scale. On the other hand, when $\alpha \geq 1$, we derive a Burgers hydrodynamic equation, as in the finite-range setting, in Euler scale.

References

1.

[1] Andjel, E.D. (1982) Invariant measures for the zero range process. Ann. Prob. 10, 525–547. 0492.60096 10.1214/aop/1176993765 euclid.aop/1176993765[1] Andjel, E.D. (1982) Invariant measures for the zero range process. Ann. Prob. 10, 525–547. 0492.60096 10.1214/aop/1176993765 euclid.aop/1176993765

2.

[2] Bahadoran, C. (2004) Blockage hydrodynamics of one-dimensional driven asymmetric systems. Ann. Probab. 32 805–854. 1079.60076 10.1214/aop/1079021465 euclid.aop/1079021465[2] Bahadoran, C. (2004) Blockage hydrodynamics of one-dimensional driven asymmetric systems. Ann. Probab. 32 805–854. 1079.60076 10.1214/aop/1079021465 euclid.aop/1079021465

3.

[3] Bahadoran, C., Fritz, J., Nagy, K. (2011) Relaxation schemes for interacting exclusions Elec. J. Probab. 16 #8, 230–262. 1228.60102 10.1214/EJP.v16-857[3] Bahadoran, C., Fritz, J., Nagy, K. (2011) Relaxation schemes for interacting exclusions Elec. J. Probab. 16 #8, 230–262. 1228.60102 10.1214/EJP.v16-857

4.

[4] Bahadoran, C., Guiol, H., Ravishankar, K., Saada, E. (2017) Constructive Euler hydrodynamics for one- dimensional attractive particle systems.  arXiv:1701.07994, <hal-01447200> 1701.07994 1101.60075 10.1214/009117906000000115 euclid.aop/1158673321[4] Bahadoran, C., Guiol, H., Ravishankar, K., Saada, E. (2017) Constructive Euler hydrodynamics for one- dimensional attractive particle systems.  arXiv:1701.07994, <hal-01447200> 1701.07994 1101.60075 10.1214/009117906000000115 euclid.aop/1158673321

5.

[5] Bernardin, C., Goncalves, P., Jimenez, B.O. (2017) Slow to fast infinitely extended reservoirs for the symmetric exclusion process with long jumps.  arXiv:1702.07216 1702.07216[5] Bernardin, C., Goncalves, P., Jimenez, B.O. (2017) Slow to fast infinitely extended reservoirs for the symmetric exclusion process with long jumps.  arXiv:1702.07216 1702.07216

6.

[6] Bernardin, C., Goncalves, P., Sethuraman, S. (2016) Occupation times of long-range exclusion and connections KPZ class exponents. Prob. Theory Rel. Fields 166, 365–428. 1350.60099 10.1007/s00440-015-0661-5[6] Bernardin, C., Goncalves, P., Sethuraman, S. (2016) Occupation times of long-range exclusion and connections KPZ class exponents. Prob. Theory Rel. Fields 166, 365–428. 1350.60099 10.1007/s00440-015-0661-5

7.

[7] Cancés, C. Gallouët, T. (2011) On the time continuity of entropy solutions. J. Evol. Equ. 11 43–55. 1232.35029 10.1007/s00028-010-0080-0[7] Cancés, C. Gallouët, T. (2011) On the time continuity of entropy solutions. J. Evol. Equ. 11 43–55. 1232.35029 10.1007/s00028-010-0080-0

8.

[8] Cocozza, C.T. (1985) Processus des misanthropes. Z. Wahr. Verw. Gebiete 70, 509–523. 0554.60097 10.1007/BF00531864[8] Cocozza, C.T. (1985) Processus des misanthropes. Z. Wahr. Verw. Gebiete 70, 509–523. 0554.60097 10.1007/BF00531864

9.

[9] De Masi, A., and Presutti, E. (1991) Mathematical Methods for Hydrodynamical Limits. LNM # 1501, Springer-Verlag, Berlin. 0754.60122[9] De Masi, A., and Presutti, E. (1991) Mathematical Methods for Hydrodynamical Limits. LNM # 1501, Springer-Verlag, Berlin. 0754.60122

10.

[10] DiBenedetto, E. (1995) Partial Differential Equations. Birkhauser, Boston.[10] DiBenedetto, E. (1995) Partial Differential Equations. Birkhauser, Boston.

11.

[11] DiPerna, R.J. (1985) Measure-valued solutions to conservation laws. Arch. Rational Mech. Anal. 88 223–270. 0616.35055 10.1007/BF00752112[11] DiPerna, R.J. (1985) Measure-valued solutions to conservation laws. Arch. Rational Mech. Anal. 88 223–270. 0616.35055 10.1007/BF00752112

12.

[12] Dupuis, P., Ellis, R.S. (1997) A Weak Convergence Approach to the Theory of Large Deviations.. Wiley, New York. 0904.60001[12] Dupuis, P., Ellis, R.S. (1997) A Weak Convergence Approach to the Theory of Large Deviations.. Wiley, New York. 0904.60001

13.

[13] Durrett, R. (2010) Probability: Theory and Examples. 4th Ed., Cambridge University Press, Cambridge. 1202.60001[13] Durrett, R. (2010) Probability: Theory and Examples. 4th Ed., Cambridge University Press, Cambridge. 1202.60001

14.

[14] Eymard, R., Roussignol, M., Tordeux, A. (2012) Convergence of a misanthrope process to the entropy solution of 1D problems Stoch. Proc. Appl. 122 3648–3679. MR2965919 1273.60093 10.1016/j.spa.2012.07.002[14] Eymard, R., Roussignol, M., Tordeux, A. (2012) Convergence of a misanthrope process to the entropy solution of 1D problems Stoch. Proc. Appl. 122 3648–3679. MR2965919 1273.60093 10.1016/j.spa.2012.07.002

15.

[15] Evans, L.C. (2010) Partial Differential Equations. $2$nd Ed., American Mathematical Society, Providence, R.I.[15] Evans, L.C. (2010) Partial Differential Equations. $2$nd Ed., American Mathematical Society, Providence, R.I.

16.

[16] Fritz, J. (2010) Application of relaxation schemes in the microscopic theory of hydrodynamics. Moscow Mathematical Journal 10 729–745. 1225.60152 10.17323/1609-4514-2010-10-4-729-745[16] Fritz, J. (2010) Application of relaxation schemes in the microscopic theory of hydrodynamics. Moscow Mathematical Journal 10 729–745. 1225.60152 10.17323/1609-4514-2010-10-4-729-745

17.

[17] Fritz, J. (2012) Compensated compactness and relaxation at the microscopic level. Annales Mathematicae et Informaticae 39 83–108. 1265.60190[17] Fritz, J. (2012) Compensated compactness and relaxation at the microscopic level. Annales Mathematicae et Informaticae 39 83–108. 1265.60190

18.

[18] Fajfrova, L, Gobron, T., Saada, E. (2016) Invariant measures of mass migration processes. Elec. J. Probab. 21, #60, 1–52. 1348.60137 10.1214/16-EJP4399[18] Fajfrova, L, Gobron, T., Saada, E. (2016) Invariant measures of mass migration processes. Elec. J. Probab. 21, #60, 1–52. 1348.60137 10.1214/16-EJP4399

19.

[19] Jara, M. (2008) Hydrodynamic limit of particle systems with long jumps.  arXiv:0805.13260805.1326[19] Jara, M. (2008) Hydrodynamic limit of particle systems with long jumps.  arXiv:0805.13260805.1326

20.

[20] Kipnis, C. and Landim, C. (1999) Scaling limits of interacting particle systems, volume 320 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin. 0927.60002[20] Kipnis, C. and Landim, C. (1999) Scaling limits of interacting particle systems, volume 320 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin. 0927.60002

21.

[21] Kru$\breve{\text {z}} $kov, S.N. (1970) First order quasilinear equations in several independent variables. Mat. Sb. (N. S.) 81 228–255; English version: Math. USSR Sbornik 10 217–243.[21] Kru$\breve{\text {z}} $kov, S.N. (1970) First order quasilinear equations in several independent variables. Mat. Sb. (N. S.) 81 228–255; English version: Math. USSR Sbornik 10 217–243.

22.

[22] Landim, C., Mourragui, M. (1997) Hydrodynamic limit of mean zero asymmetric zero-range processes in infinite volume. Ann. IHP Prob. Stat. 33 65–82. 0870.60098 10.1016/S0246-0203(97)80116-1[22] Landim, C., Mourragui, M. (1997) Hydrodynamic limit of mean zero asymmetric zero-range processes in infinite volume. Ann. IHP Prob. Stat. 33 65–82. 0870.60098 10.1016/S0246-0203(97)80116-1

23.

[23] Liggett, T.M. (1985) Interacting Particle Systems. Springer-Verlag, New York. 0559.60078[23] Liggett, T.M. (1985) Interacting Particle Systems. Springer-Verlag, New York. 0559.60078

24.

[24] Rezakhanlou, F. (1991) Hydrodynamic limit for attractive particle systems on $\mathbb{Z} ^d$, Comm. Math. Phys. 140, 417–448. 0738.60098 10.1007/BF02099130 euclid.cmp/1104248092[24] Rezakhanlou, F. (1991) Hydrodynamic limit for attractive particle systems on $\mathbb{Z} ^d$, Comm. Math. Phys. 140, 417–448. 0738.60098 10.1007/BF02099130 euclid.cmp/1104248092

25.

[25] Sethuraman, S. (2016) On microscopic derivation of a fractional stochastic Burgers equation. Commun. Math. Phys. 341 625–665. 1343.60087 10.1007/s00220-015-2524-4[25] Sethuraman, S. (2016) On microscopic derivation of a fractional stochastic Burgers equation. Commun. Math. Phys. 341 625–665. 1343.60087 10.1007/s00220-015-2524-4

26.

[26] Sethuraman, S. (2001) On extremal measures for conservative particle systems. Ann. IHP Prob. Stat. 37 139–154. 0981.60098 10.1016/S0246-0203(00)01062-1[26] Sethuraman, S. (2001) On extremal measures for conservative particle systems. Ann. IHP Prob. Stat. 37 139–154. 0981.60098 10.1016/S0246-0203(00)01062-1

27.

[27] Shahar, D. (2018) PhD Thesis, University of Arizona.[27] Shahar, D. (2018) PhD Thesis, University of Arizona.

28.

[28] Spohn, H. (1991) Large Scale Dynamics of Interacting Particles. Springer-Verlag, Berlin. 0742.76002[28] Spohn, H. (1991) Large Scale Dynamics of Interacting Particles. Springer-Verlag, Berlin. 0742.76002
Sunder Sethuraman and Doron Shahar "Hydrodynamic limits for long-range asymmetric interacting particle systems," Electronic Journal of Probability 23(none), 1-54, (2018). https://doi.org/10.1214/18-EJP237
Received: 27 February 2018; Accepted: 17 October 2018; Published: 2018
Vol.23 • 2018
Back to Top