Open Access
2018 A support and density theorem for Markovian rough paths
Ilya Chevyrev, Marcel Ogrodnik
Electron. J. Probab. 23: 1-16 (2018). DOI: 10.1214/18-EJP184
Abstract

We establish two results concerning a class of geometric rough paths $\mathbf{X} $ which arise as Markov processes associated to uniformly subelliptic Dirichlet forms. The first is a support theorem for $\mathbf{X} $ in $\alpha $-Hölder rough path topology for all $\alpha \in (0,1/2)$, which proves a conjecture of Friz–Victoir [13]. The second is a Hörmander-type theorem for the existence of a density of a rough differential equation driven by $\mathbf{X} $, the proof of which is based on analysis of (non-symmetric) Dirichlet forms on manifolds.

References

1.

[1] Andrei A. Agrachev and Yuri L. Sachkov, Control theory from the geometric viewpoint, Encyclopaedia of Mathematical Sciences, vol. 87, Springer-Verlag, Berlin, 2004, Control Theory and Optimization, II.[1] Andrei A. Agrachev and Yuri L. Sachkov, Control theory from the geometric viewpoint, Encyclopaedia of Mathematical Sciences, vol. 87, Springer-Verlag, Berlin, 2004, Control Theory and Optimization, II.

2.

[2] R. F. Bass, B. M. Hambly, and T. J. Lyons, Extending the Wong-Zakai theorem to reversible Markov processes, J. Eur. Math. Soc. (JEMS) 4 (2002), no. 3, 237–269. 1010.60070 10.1007/s100970200040[2] R. F. Bass, B. M. Hambly, and T. J. Lyons, Extending the Wong-Zakai theorem to reversible Markov processes, J. Eur. Math. Soc. (JEMS) 4 (2002), no. 3, 237–269. 1010.60070 10.1007/s100970200040

3.

[3] Fabrice Baudoin and Martin Hairer, A version of Hörmander’s theorem for the fractional Brownian motion, Probab. Theory Related Fields 139 (2007), no. 3–4, 373–395. 1123.60038 10.1007/s00440-006-0035-0[3] Fabrice Baudoin and Martin Hairer, A version of Hörmander’s theorem for the fractional Brownian motion, Probab. Theory Related Fields 139 (2007), no. 3–4, 373–395. 1123.60038 10.1007/s00440-006-0035-0

4.

[4] Thomas Cass and Peter Friz, Densities for rough differential equations under Hörmander’s condition, Ann. of Math. (2) 171 (2010), no. 3, 2115–2141. 1205.60105 10.4007/annals.2010.171.2115[4] Thomas Cass and Peter Friz, Densities for rough differential equations under Hörmander’s condition, Ann. of Math. (2) 171 (2010), no. 3, 2115–2141. 1205.60105 10.4007/annals.2010.171.2115

5.

[5] Thomas Cass, Martin Hairer, Christian Litterer, and Samy Tindel, Smoothness of the density for solutions to Gaussian rough differential equations, Ann. Probab. 43 (2015), no. 1, 188–239. 1309.60055 10.1214/13-AOP896 euclid.aop/1415801556[5] Thomas Cass, Martin Hairer, Christian Litterer, and Samy Tindel, Smoothness of the density for solutions to Gaussian rough differential equations, Ann. Probab. 43 (2015), no. 1, 188–239. 1309.60055 10.1214/13-AOP896 euclid.aop/1415801556

6.

[6] Thomas Cass and Marcel Ogrodnik, Tail estimates for Markovian rough paths, Ann. Probab. 45 (2017), no. 4, 2477–2504. 06786086 10.1214/16-AOP1117 euclid.aop/1502438432[6] Thomas Cass and Marcel Ogrodnik, Tail estimates for Markovian rough paths, Ann. Probab. 45 (2017), no. 4, 2477–2504. 06786086 10.1214/16-AOP1117 euclid.aop/1502438432

7.

[7] Ilya Chevyrev, Random walks and Lévy processes as rough paths, Probab. Theory Related Fields 170 (2018), no. 3-4, 891–932.[7] Ilya Chevyrev, Random walks and Lévy processes as rough paths, Probab. Theory Related Fields 170 (2018), no. 3-4, 891–932.

8.

[8] Ilya Chevyrev and Terry Lyons, Characteristic functions of measures on geometric rough paths, Ann. Probab. 44 (2016), no. 6, 4049–4082. 1393.60008 10.1214/15-AOP1068 euclid.aop/1479114270[8] Ilya Chevyrev and Terry Lyons, Characteristic functions of measures on geometric rough paths, Ann. Probab. 44 (2016), no. 6, 4049–4082. 1393.60008 10.1214/15-AOP1068 euclid.aop/1479114270

9.

[9] P. J. Fitzsimmons, Absolute continuity of symmetric diffusions, Ann. Probab. 25 (1997), no. 1, 230–258. 0873.60054 10.1214/aop/1024404287 euclid.aop/1024404287[9] P. J. Fitzsimmons, Absolute continuity of symmetric diffusions, Ann. Probab. 25 (1997), no. 1, 230–258. 0873.60054 10.1214/aop/1024404287 euclid.aop/1024404287

10.

[10] Peter Friz and Nicolas Victoir, On uniformly subelliptic operators and stochastic area, Probab. Theory Related Fields 142 (2008), no. 3–4, 475–523. 1151.31009 10.1007/s00440-007-0113-y[10] Peter Friz and Nicolas Victoir, On uniformly subelliptic operators and stochastic area, Probab. Theory Related Fields 142 (2008), no. 3–4, 475–523. 1151.31009 10.1007/s00440-007-0113-y

11.

[11] Peter K. Friz, Benjamin Gess, Archil Gulisashvili, and Sebastian Riedel, The Jain–Monrad criterion for rough paths and applications to random Fourier series and non-Markovian Hörmander theory, Ann. Probab. 44 (2016), no. 1, 684–738. 1347.60097 10.1214/14-AOP986 euclid.aop/1454423053[11] Peter K. Friz, Benjamin Gess, Archil Gulisashvili, and Sebastian Riedel, The Jain–Monrad criterion for rough paths and applications to random Fourier series and non-Markovian Hörmander theory, Ann. Probab. 44 (2016), no. 1, 684–738. 1347.60097 10.1214/14-AOP986 euclid.aop/1454423053

12.

[12] Peter K. Friz and Atul Shekhar, General rough integration, Lévy rough paths and a Lévy-Kintchine-type formula, Ann. Probab. 45 (2017), no. 4, 2707–2765. 06786092 10.1214/16-AOP1123 euclid.aop/1502438438[12] Peter K. Friz and Atul Shekhar, General rough integration, Lévy rough paths and a Lévy-Kintchine-type formula, Ann. Probab. 45 (2017), no. 4, 2707–2765. 06786092 10.1214/16-AOP1123 euclid.aop/1502438438

13.

[13] Peter K. Friz and Nicolas B. Victoir, Multidimensional stochastic processes as rough paths, Cambridge Studies in Advanced Mathematics, vol. 120, Cambridge University Press, Cambridge, 2010.[13] Peter K. Friz and Nicolas B. Victoir, Multidimensional stochastic processes as rough paths, Cambridge Studies in Advanced Mathematics, vol. 120, Cambridge University Press, Cambridge, 2010.

14.

[14] Masatoshi Fukushima, Yoichi Oshima, and Masayoshi Takeda, Dirichlet forms and symmetric Markov processes, extended ed., de Gruyter Studies in Mathematics, vol. 19, Walter de Gruyter & Co., Berlin, 2011. 1227.31001[14] Masatoshi Fukushima, Yoichi Oshima, and Masayoshi Takeda, Dirichlet forms and symmetric Markov processes, extended ed., de Gruyter Studies in Mathematics, vol. 19, Walter de Gruyter & Co., Berlin, 2011. 1227.31001

15.

[15] Victor Guillemin and Shlomo Sternberg, Geometric asymptotics, American Mathematical Society, Providence, R.I., 1977, Mathematical Surveys, No. 14. 0364.53011[15] Victor Guillemin and Shlomo Sternberg, Geometric asymptotics, American Mathematical Society, Providence, R.I., 1977, Mathematical Surveys, No. 14. 0364.53011

16.

[16] Antoine Lejay, Stochastic differential equations driven by processes generated by divergence form operators. I. A Wong-Zakai theorem, ESAIM Probab. Stat. 10 (2006), 356–379. 1181.60085 10.1051/ps:2006015[16] Antoine Lejay, Stochastic differential equations driven by processes generated by divergence form operators. I. A Wong-Zakai theorem, ESAIM Probab. Stat. 10 (2006), 356–379. 1181.60085 10.1051/ps:2006015

17.

[17] Antoine Lejay, Stochastic differential equations driven by processes generated by divergence form operators. II. Convergence results, ESAIM Probab. Stat. 12 (2008), 387–411.[17] Antoine Lejay, Stochastic differential equations driven by processes generated by divergence form operators. II. Convergence results, ESAIM Probab. Stat. 12 (2008), 387–411.

18.

[18] Terry Lyons and Lucreţiu Stoica, The limits of stochastic integrals of differential forms, Ann. Probab. 27 (1999), no. 1, 1–49. 0969.60078 10.1214/aop/1022677253 euclid.aop/1022677253[18] Terry Lyons and Lucreţiu Stoica, The limits of stochastic integrals of differential forms, Ann. Probab. 27 (1999), no. 1, 1–49. 0969.60078 10.1214/aop/1022677253 euclid.aop/1022677253

19.

[19] Terry J. Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoamericana 14 (1998), no. 2, 215–310. 0923.34056 10.4171/RMI/240[19] Terry J. Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoamericana 14 (1998), no. 2, 215–310. 0923.34056 10.4171/RMI/240

20.

[20] J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958), 931–954. 0096.06902 10.2307/2372841[20] J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958), 931–954. 0096.06902 10.2307/2372841

21.

[21] Yoichi Oshima, Semi-Dirichlet forms and Markov processes, De Gruyter Studies in Mathematics, vol. 48, Walter de Gruyter & Co., Berlin, 2013.[21] Yoichi Oshima, Semi-Dirichlet forms and Markov processes, De Gruyter Studies in Mathematics, vol. 48, Walter de Gruyter & Co., Berlin, 2013.

22.

[22] L. Saloff-Coste and D. W. Stroock, Opérateurs uniformément sous-elliptiques sur les groupes de Lie, J. Funct. Anal. 98 (1991), no. 1, 97–121.[22] L. Saloff-Coste and D. W. Stroock, Opérateurs uniformément sous-elliptiques sur les groupes de Lie, J. Funct. Anal. 98 (1991), no. 1, 97–121.

23.

[23] Daniel W. Stroock, Diffusion semigroups corresponding to uniformly elliptic divergence form operators, Séminaire de Probabilités, XXII, Lecture Notes in Math., vol. 1321, Springer, Berlin, 1988, pp. 316–347.[23] Daniel W. Stroock, Diffusion semigroups corresponding to uniformly elliptic divergence form operators, Séminaire de Probabilités, XXII, Lecture Notes in Math., vol. 1321, Springer, Berlin, 1988, pp. 316–347.

24.

[24] Karl-Theodor Sturm, Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations, Osaka J. Math. 32 (1995), no. 2, 275–312. 0854.35015 euclid.ojm/1200786053[24] Karl-Theodor Sturm, Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations, Osaka J. Math. 32 (1995), no. 2, 275–312. 0854.35015 euclid.ojm/1200786053
Ilya Chevyrev and Marcel Ogrodnik "A support and density theorem for Markovian rough paths," Electronic Journal of Probability 23(none), 1-16, (2018). https://doi.org/10.1214/18-EJP184
Received: 24 August 2017; Accepted: 1 June 2018; Published: 2018
Vol.23 • 2018
Back to Top