Translator Disclaimer
2015 Lyapunov exponents of random walks in small random potential: the upper bound
Thomas Mountford, Jean-Christophe Mourrat
Author Affiliations +
Electron. J. Probab. 20: 1-18 (2015). DOI: 10.1214/EJP.v20-3489

Abstract

We consider the simple random walk on $\mathbb{Z}^d$ evolving in a random i.i.d. potential taking values in $[0,+\infty)$. The potential is not assumed integrable, and can be rescaled by a multiplicative factor $\lambda > 0$. Completing the work started in a companion paper, we give the asymptotic behaviour of the Lyapunov exponents for $d \ge 3$, both annealed and quenched, as the scale parameter $\lambda$ tends to zero.

Citation

Download Citation

Thomas Mountford. Jean-Christophe Mourrat. "Lyapunov exponents of random walks in small random potential: the upper bound." Electron. J. Probab. 20 1 - 18, 2015. https://doi.org/10.1214/EJP.v20-3489

Information

Accepted: 26 April 2015; Published: 2015
First available in Project Euclid: 4 June 2016

zbMATH: 1327.82044
MathSciNet: MR3339869
Digital Object Identifier: 10.1214/EJP.v20-3489

Subjects:
Primary: 82B44
Secondary: 60K37, 82D30

JOURNAL ARTICLE
18 PAGES


SHARE
Vol.20 • 2015
Back to Top