Abstract
We study the depinning transition of the $1+1$ dimensional directed polymer in a random environment with a defect line. The random environment consists of i.i.d. potential values assigned to each site of $\mathbb{Z}^2$; sites on the positive axis have the potential enhanced by a deterministic value $u$. We show that for small inverse temperature $\beta$ the quenched and annealed free energies differ significantly at most in a small neighborhood (of size of order $\beta$) of the annealed critical point $u_c^a=0$. For the case $u=0$, we show that the difference between quenched and annealed free energies is of order $\beta^4$ as $\beta\to 0$, assuming only finiteness of exponential moments of the potential values, improving existing results which required stronger assumptions.
Citation
Kenneth Alexander. Gökhan Yıldırım. "Directed polymers in a random environment with a defect line." Electron. J. Probab. 20 1 - 20, 2015. https://doi.org/10.1214/EJP.v20-3379
Information