Open Access
2014 Local probabilities for random walks with negative drift conditioned to stay nonnegative
Denis Denisov, Vladimir Vatutin, Vitali Wachtel
Author Affiliations +
Electron. J. Probab. 19: 1-17 (2014). DOI: 10.1214/EJP.v19-3426

Abstract

Let $S_n, n=0,1,...,$ with $S_0=0$ be a random walk with negative drift and let $\tau_x=\min\{k>0: S_k<-x\}, \, x\geq 0.$ Assuming that the distribution of i.i.d. increments of the random walk is absolutely continuous with subexponential density we find the asymptotic behavior, as $n\to\infty$ of the probabilities $\mathbf{P}(\tau_x=n)$ and $\mathbf{P}(S_n\in (y,y+\Delta],\tau_x>n)$ for fixed $x$ and various ranges of $y.$ The case of lattice distribution of increments is considered as well.

Citation

Download Citation

Denis Denisov. Vladimir Vatutin. Vitali Wachtel. "Local probabilities for random walks with negative drift conditioned to stay nonnegative." Electron. J. Probab. 19 1 - 17, 2014. https://doi.org/10.1214/EJP.v19-3426

Information

Accepted: 26 September 2014; Published: 2014
First available in Project Euclid: 4 June 2016

zbMATH: 1307.60050
MathSciNet: MR3263645
Digital Object Identifier: 10.1214/EJP.v19-3426

Subjects:
Primary: 60G50
Secondary: 60F10

Keywords: conditional local limit theorems , Exit time , negative drift , Random walk

Vol.19 • 2014
Back to Top