Open Access
2014 Branching random walks and contact processes on Galton-Watson trees
Wei Su
Author Affiliations +
Electron. J. Probab. 19: 1-12 (2014). DOI: 10.1214/EJP.v19-3118

Abstract

We consider branching random walks and contact processes on infinite, connected, locally finite graphs whose reproduction and infectivity rates across edges are inversely proportional to vertex degree. We show that when the ambient graph is a Galton-Watson tree then, in certain circumstances, the branching random walks and contact processes will have weak survival phases. We also provide bounds on critical values.

Citation

Download Citation

Wei Su. "Branching random walks and contact processes on Galton-Watson trees." Electron. J. Probab. 19 1 - 12, 2014. https://doi.org/10.1214/EJP.v19-3118

Information

Accepted: 17 April 2014; Published: 2014
First available in Project Euclid: 4 June 2016

zbMATH: 1291.60177
MathSciNet: MR3194740
Digital Object Identifier: 10.1214/EJP.v19-3118

Subjects:
Primary: 60J80
Secondary: 60J99

Keywords: Branching random walk , contact process , Galton-Watson tree , phase transition

Vol.19 • 2014
Back to Top