Open Access
2013 Poisson stochastic integration in Banach spaces
Sjoerd Dirksen, Jan Maas, Jan Neerven
Author Affiliations +
Electron. J. Probab. 18: 1-28 (2013). DOI: 10.1214/EJP.v18-2945

Abstract

We prove new upper and lower bounds for Banach space-valued stochastic integrals with respect to a compensated Poisson random measure. Our estimates apply to Banach spaces with non-trivial martingale (co)type and extend various results in the literature. We also develop a Malliavin framework to interpret Poisson stochastic integrals as vector-valued Skorohod integrals, and prove a Clark- Ocone representation formula.

Citation

Download Citation

Sjoerd Dirksen. Jan Maas. Jan Neerven. "Poisson stochastic integration in Banach spaces." Electron. J. Probab. 18 1 - 28, 2013. https://doi.org/10.1214/EJP.v18-2945

Information

Accepted: 18 November 2013; Published: 2013
First available in Project Euclid: 4 June 2016

zbMATH: 1285.60049
MathSciNet: MR3141801
Digital Object Identifier: 10.1214/EJP.v18-2945

Subjects:
Primary: 60H05
Secondary: 60G55 , 60H07

Keywords: Clark-Ocone representation theorem , Malliavin calculus , martingale type , Poisson random measure , stochastic convolutions , stochastic integration , UMD Banach spaces

Vol.18 • 2013
Back to Top