Abstract
A version of the saddle point method is developed, which allows one to describe exactly the asymptotic behavior of distribution densities of Lévy driven stochastic integrals with deterministic kernels. Exact asymptotic behavior is established for (a) the transition probability density of a real-valued Lévy process; (b) the transition probability density and the invariant distribution density of a Lévy driven Ornstein-Uhlenbeck process; (c) the distribution density of the fractional Lévy motion.
Citation
Victoria Knopova. Alexei Kulik. "Exact Asymptotic for Distribution Densities of Lévy Functionals." Electron. J. Probab. 16 1394 - 1433, 2011. https://doi.org/10.1214/EJP.v16-909
Information