Open Access
2010 Brownian Dynamics of Globules
Myriam Fradon
Author Affiliations +
Electron. J. Probab. 15: 142-161 (2010). DOI: 10.1214/EJP.v15-739
Abstract

We prove the existence and uniqueness of a strong solution of a stochastic differential equation with normal reflection representing the random motion of finitely many globules. Each globule is a sphere with time-dependent random radius and a center moving according to a diffusion process. The spheres are hard, hence non-intersecting, which induces in the equation a reflection term with a local (collision-)time. A smooth interaction is considered too and, in the particular case of a gradient system, the reversible measure of the dynamics is given. In the proofs, we analyze geometrical properties of the boundary of the set in which the process takes its values, in particular the so-called Uniform Exterior Sphere and Uniform Normal Cone properties. These techniques extend to other hard core models of objects with a time-dependent random characteristic: we present here an application to the random motion of a chain-like molecule.

References

1.

P. Dupuis and H. Ishii. SDEs with oblique reflection on nonsmooth domains. Annals of Probability 21 No. 1 (1993) 554-580. 0787.60099 10.1214/aop/1176989415 euclid.aop/1176989415P. Dupuis and H. Ishii. SDEs with oblique reflection on nonsmooth domains. Annals of Probability 21 No. 1 (1993) 554-580. 0787.60099 10.1214/aop/1176989415 euclid.aop/1176989415

2.

P. Dupuis and H. Ishii. Correction : SDEs with oblique reflection on nonsmooth domains. Annals of Probability 36 No. 5 (2008) 1992-1997. 1168.60019 10.1214/07-AOP374P. Dupuis and H. Ishii. Correction : SDEs with oblique reflection on nonsmooth domains. Annals of Probability 36 No. 5 (2008) 1992-1997. 1168.60019 10.1214/07-AOP374

3.

W. Fenchel. Convex cones, sets, and functions. Lecture notes, Princeton Univ. (1953).W. Fenchel. Convex cones, sets, and functions. Lecture notes, Princeton Univ. (1953).

4.

M. Fradon and S. Roelly. Infinite system of Brownian balls with interaction: the non-reversible case. ESAIM: PS 11 (2007) 55-79. 1185.60111 10.1051/ps:2007006M. Fradon and S. Roelly. Infinite system of Brownian balls with interaction: the non-reversible case. ESAIM: PS 11 (2007) 55-79. 1185.60111 10.1051/ps:2007006

5.

M. Fradon and S. Roelly. Infinite system of Brownian balls : Equilibrium measures are canonical Gibbs. Stochastics and Dynamics 6 No. 1 (2006) 97-122. 1088.60092 10.1142/S0219493706001669M. Fradon and S. Roelly. Infinite system of Brownian balls : Equilibrium measures are canonical Gibbs. Stochastics and Dynamics 6 No. 1 (2006) 97-122. 1088.60092 10.1142/S0219493706001669

6.

M. Fradon and S. Roelly. Infinitely many Brownian globules with Brownian radii. Preprint Universität Potsdam (2009), arXiv:1001.3252v1 [math.PR]. 1001.3252v1 1215.60040 10.1142/S021949371000311XM. Fradon and S. Roelly. Infinitely many Brownian globules with Brownian radii. Preprint Universität Potsdam (2009), arXiv:1001.3252v1 [math.PR]. 1001.3252v1 1215.60040 10.1142/S021949371000311X

7.

N. Ikeda and S. Watanabe. Stochastic Differential Equations and Diffusion Processes. North Holland - Kodansha (1981). 0495.60005N. Ikeda and S. Watanabe. Stochastic Differential Equations and Diffusion Processes. North Holland - Kodansha (1981). 0495.60005

8.

P. L. Lions and A. S. Sznitman. Stochastic Differential Equations with Reflecting Boundary Conditions. Com. Pure and Applied Mathematics 37 (1984), 511-537. 0598.60060 10.1002/cpa.3160370408P. L. Lions and A. S. Sznitman. Stochastic Differential Equations with Reflecting Boundary Conditions. Com. Pure and Applied Mathematics 37 (1984), 511-537. 0598.60060 10.1002/cpa.3160370408

9.

Y. Saisho and H. Tanaka. Stochastic Differential Equations for Mutually Reflecting Brownian Balls. Osaka J. Math. 23 (1986), 725-740. MR866273 0613.60057 euclid.ojm/1200779527Y. Saisho and H. Tanaka. Stochastic Differential Equations for Mutually Reflecting Brownian Balls. Osaka J. Math. 23 (1986), 725-740. MR866273 0613.60057 euclid.ojm/1200779527

10.

Y. Saisho and H. Tanaka. On the symmetry of a Reflecting Brownian Motion Defined by Skorohod's Equation for a Multi-Dimensional domain. Tokyo J. Math. 10 (1987), 419-435. 0636.60083 10.3836/tjm/1270134524 euclid.tjm/1270134524Y. Saisho and H. Tanaka. On the symmetry of a Reflecting Brownian Motion Defined by Skorohod's Equation for a Multi-Dimensional domain. Tokyo J. Math. 10 (1987), 419-435. 0636.60083 10.3836/tjm/1270134524 euclid.tjm/1270134524

11.

Y. Saisho. Stochastic Differential Equations for multi-dimensional domain with reflecting boundary. Probability Theory and Related Fields 74 (1987), 455-477. 0591.60049 10.1007/BF00699100Y. Saisho. Stochastic Differential Equations for multi-dimensional domain with reflecting boundary. Probability Theory and Related Fields 74 (1987), 455-477. 0591.60049 10.1007/BF00699100

12.

Y. Saisho. A model of the random motion of mutually reflecting molecules in $R^d$. Kumamoto Journal of Mathematics 7 (1994), 95-123. 0799.60056Y. Saisho. A model of the random motion of mutually reflecting molecules in $R^d$. Kumamoto Journal of Mathematics 7 (1994), 95-123. 0799.60056

13.

A. V. Skorokhod. Stochastic equations for diffusion processes in a bounded region 1, 2. Theor. Veroyatnost. i Primenen 6 (1961), 264-274; 7 (1962) 3-23.A. V. Skorokhod. Stochastic equations for diffusion processes in a bounded region 1, 2. Theor. Veroyatnost. i Primenen 6 (1961), 264-274; 7 (1962) 3-23.

14.

H. Tanaka. Stochastic Differential Equations with Reflecting Boundary Conditions in Convex Regions. Hiroshima Math. J. 9 (1979), 163-177. 0423.60055 euclid.hmj/1206135203H. Tanaka. Stochastic Differential Equations with Reflecting Boundary Conditions in Convex Regions. Hiroshima Math. J. 9 (1979), 163-177. 0423.60055 euclid.hmj/1206135203
Myriam Fradon "Brownian Dynamics of Globules," Electronic Journal of Probability 15(none), 142-161, (2010). https://doi.org/10.1214/EJP.v15-739
Accepted: 11 February 2010; Published: 2010
Vol.15 • 2010
Back to Top