Translator Disclaimer
2009 The growth exponent for planar loop-erased random walk
Robert Masson
Author Affiliations +
Electron. J. Probab. 14: 1012-1073 (2009). DOI: 10.1214/EJP.v14-651

Abstract

We give a new proof of a result of Kenyon that the growth exponent for loop-erased random walks in two dimensions is 5/4. The proof uses the convergence of LERW to Schramm-Loewner evolution with parameter 2, and is valid for irreducible bounded symmetric random walks on any two dimensional discrete lattice.

Citation

Download Citation

Robert Masson. "The growth exponent for planar loop-erased random walk." Electron. J. Probab. 14 1012 - 1073, 2009. https://doi.org/10.1214/EJP.v14-651

Information

Accepted: 17 May 2009; Published: 2009
First available in Project Euclid: 1 June 2016

zbMATH: 1191.60061
MathSciNet: MR2506124
Digital Object Identifier: 10.1214/EJP.v14-651

Subjects:
Primary: 60G50
Secondary: 60J65

JOURNAL ARTICLE
62 PAGES


SHARE
Vol.14 • 2009
Back to Top