Open Access
2009 Strong Limit Theorems for a Simple Random Walk on the 2-Dimensional Comb
Endre Csáki, Miklós Csörgö, Antonia Feldes, Pál Révész
Author Affiliations +
Electron. J. Probab. 14: 2371-2390 (2009). DOI: 10.1214/EJP.v14-710
Abstract

We study the path behaviour of a simple random walk on the $2$-dimensional comb lattice $C^2$ that is obtained from $\mathbb{Z}^2$ by removing all horizontal edges off the $x$-axis. In particular, we prove a strong approximation result for such a random walk which, in turn, enables us to establish strong limit theorems, like the joint Strassen type law of the iterated logarithm of its two components, as well as their marginal Hirsch type behaviour.

References

1.

D. Bertacchi. Asymptotic behaviour of the simple random walk on the 2-dimensional comb. Electron. J. Probab. 11 (2006), 1184-1203. 1135.60045 10.1214/EJP.v11-377D. Bertacchi. Asymptotic behaviour of the simple random walk on the 2-dimensional comb. Electron. J. Probab. 11 (2006), 1184-1203. 1135.60045 10.1214/EJP.v11-377

2.

D. Bertacchi and F. Zucca. Uniform asymptotic estimates of transition probabilities on combs. J. Aust. Math. Soc. 75 (2003), 325-353. 1038.60070 10.1017/S1446788700008144D. Bertacchi and F. Zucca. Uniform asymptotic estimates of transition probabilities on combs. J. Aust. Math. Soc. 75 (2003), 325-353. 1038.60070 10.1017/S1446788700008144

3.

J. Bertoin. Iterated Brownian motion and stable $(\frac14)$ subordinator. Statist. Probab. Lett. 27 (1996), 111-114. 0854.60082 10.1016/0167-7152(95)00051-8J. Bertoin. Iterated Brownian motion and stable $(\frac14)$ subordinator. Statist. Probab. Lett. 27 (1996), 111-114. 0854.60082 10.1016/0167-7152(95)00051-8

4.

A.N. Borodin. On the character of convergence to Brownian local time I. Probab. Theory Related Fields 72 (1986), 231-250. 0572.60078 10.1007/BF00699105A.N. Borodin. On the character of convergence to Brownian local time I. Probab. Theory Related Fields 72 (1986), 231-250. 0572.60078 10.1007/BF00699105

5.

A.N. Borodin and P. Salminen. Handbook of Brownian Motion–-Facts and Formulae, 2nd ed. Birkhäuser Verlag, Basel, 2002. 1012.60003A.N. Borodin and P. Salminen. Handbook of Brownian Motion–-Facts and Formulae, 2nd ed. Birkhäuser Verlag, Basel, 2002. 1012.60003

6.

K.L. Chung. On the maximum partial sums of sequences of independent random variables. Trans. Amer. Math. Soc. 64 (1948), 205-233. 0032.17102 10.1090/S0002-9947-1948-0026274-0K.L. Chung. On the maximum partial sums of sequences of independent random variables. Trans. Amer. Math. Soc. 64 (1948), 205-233. 0032.17102 10.1090/S0002-9947-1948-0026274-0

7.

E. Csáki, M. Csörgõ, A. Földes and P. Révész. Brownian local time approximated by a Wiener sheet. Ann. Probab. 17 (1989), 516-537.E. Csáki, M. Csörgõ, A. Földes and P. Révész. Brownian local time approximated by a Wiener sheet. Ann. Probab. 17 (1989), 516-537.

8.

E. Csáki, M. Csörgõ, A. Földes and P. Révész. Strong approximation of additive functionals. J. Theoret. Probab. 5 (1992), 679-706.E. Csáki, M. Csörgõ, A. Földes and P. Révész. Strong approximation of additive functionals. J. Theoret. Probab. 5 (1992), 679-706.

9.

E. Csáki, M. Csörgõ, A. Földes and P. Révész. Global Strassen-type theorems for iterated Brownian motion. Stochastic Process. Appl. 59 (1995), 321-341.E. Csáki, M. Csörgõ, A. Földes and P. Révész. Global Strassen-type theorems for iterated Brownian motion. Stochastic Process. Appl. 59 (1995), 321-341.

10.

E. Csáki and A. Földes. How big are the increments of the local time of a recurrent random walk? Z. Wahrsch. verw. Gebiete 65 (1983), 307-322. MR722134 10.1007/BF00532485E. Csáki and A. Földes. How big are the increments of the local time of a recurrent random walk? Z. Wahrsch. verw. Gebiete 65 (1983), 307-322. MR722134 10.1007/BF00532485

11.

E. Csáki, A. Földes and P. Révész. Strassen theorems for a class of iterated Processes. Trans. Amer. Math. Soc. 349 (1997), 1153-1167.E. Csáki, A. Földes and P. Révész. Strassen theorems for a class of iterated Processes. Trans. Amer. Math. Soc. 349 (1997), 1153-1167.

12.

M. Csörgõ, and P. Révész. {Strong Approximations in Probability and Statistics. Academic Press, New York, 1981.M. Csörgõ, and P. Révész. {Strong Approximations in Probability and Statistics. Academic Press, New York, 1981.

13.

R.L. Dobrushin. Two limit theorems for the simplest random walk on a line (in Russian). Uspehi Mat. Nauk (N.S.) 10 (1955), 139-146.R.L. Dobrushin. Two limit theorems for the simplest random walk on a line (in Russian). Uspehi Mat. Nauk (N.S.) 10 (1955), 139-146.

14.

W.M. Hirsch. A strong law for the maximum cumulative sum of independent random variables. Comm. Pure Appl. Math. 18 (1965), 109-127. 0135.19205 10.1002/cpa.3160180112W.M. Hirsch. A strong law for the maximum cumulative sum of independent random variables. Comm. Pure Appl. Math. 18 (1965), 109-127. 0135.19205 10.1002/cpa.3160180112

15.

N. Ikeda and S. Watanabe. Stochastic Differential Equations and Diffusion Processes, 2nd ed. North-Holland, Amsterdam, 1989. MR637061 0684.60040N. Ikeda and S. Watanabe. Stochastic Differential Equations and Diffusion Processes, 2nd ed. North-Holland, Amsterdam, 1989. MR637061 0684.60040

16.

Y. Kasahara. Limit theorems for Lévy processes and Poisson point processes and their applications to Brownian excursions. J. Math. Kyoto Univ. 24 (1984), 521-538. 0557.60021 10.1215/kjm/1250521278 euclid.kjm/1250521278Y. Kasahara. Limit theorems for Lévy processes and Poisson point processes and their applications to Brownian excursions. J. Math. Kyoto Univ. 24 (1984), 521-538. 0557.60021 10.1215/kjm/1250521278 euclid.kjm/1250521278

17.

M. Krishnapur and Y. Peres. Recurrent graphs where two independent random walks collide finitely often. Electron. Comm. Probab. 9 (2004), 72-81. 1060.60044 10.1214/ECP.v9-1111M. Krishnapur and Y. Peres. Recurrent graphs where two independent random walks collide finitely often. Electron. Comm. Probab. 9 (2004), 72-81. 1060.60044 10.1214/ECP.v9-1111

18.

P. Lévy. Processus stochastiques et mouvement Brownien, 2nd ed. Gauthier-Villars, Paris, 1965.P. Lévy. Processus stochastiques et mouvement Brownien, 2nd ed. Gauthier-Villars, Paris, 1965.

19.

E. Nane. Laws of the iterated logarithm for a class of iterated processes. Statist. Probab. Lett. 79 (2009), 1744-1751. MR2566748 1173.60317 10.1016/j.spl.2009.04.013E. Nane. Laws of the iterated logarithm for a class of iterated processes. Statist. Probab. Lett. 79 (2009), 1744-1751. MR2566748 1173.60317 10.1016/j.spl.2009.04.013

20.

G. C. Papanicolaou, D. W. Stroock and S. R. S. Varadhan. Martingale approach to some limit theorems. Duke Univ. Maths. Series III. Statistical Mechanics and Dynamical System, 1977.G. C. Papanicolaou, D. W. Stroock and S. R. S. Varadhan. Martingale approach to some limit theorems. Duke Univ. Maths. Series III. Statistical Mechanics and Dynamical System, 1977.

21.

P. Révész. Local time and invariance. Lecture Notes in Math. 861 (1981), 128-145. Springer, New York.P. Révész. Local time and invariance. Lecture Notes in Math. 861 (1981), 128-145. Springer, New York.

22.

P. Révész. Random Walk in Random and Non-Random Environments, 2nd ed. World Scientific, Singapore 2005.P. Révész. Random Walk in Random and Non-Random Environments, 2nd ed. World Scientific, Singapore 2005.

23.

F. Riesz and B. Sz.-Nagy. Functional Analysis. Frederick Ungar, New York, 1955. MR0071727 0070.10902F. Riesz and B. Sz.-Nagy. Functional Analysis. Frederick Ungar, New York, 1955. MR0071727 0070.10902

24.

Z. Shi. Liminf behaviours of the windings and Lévy's stochastic areas of planar Brownian motion. Séminaire de Probabilités, XXVIII, Lecture Notes in Math. 1583 (1994), 122-137.Z. Shi. Liminf behaviours of the windings and Lévy's stochastic areas of planar Brownian motion. Séminaire de Probabilités, XXVIII, Lecture Notes in Math. 1583 (1994), 122-137.

25.

V. Strassen. An invariance principle for the law of the iterated logarithm. Z. Wahrsch. verw. Gebiete 3 (1964), 211-226. 0132.12903 10.1007/BF00534910V. Strassen. An invariance principle for the law of the iterated logarithm. Z. Wahrsch. verw. Gebiete 3 (1964), 211-226. 0132.12903 10.1007/BF00534910

26.

G. H. Weiss and S. Havlin. Some properties of a random walk on a comb structure. Physica A 134 (1986), 474-482.G. H. Weiss and S. Havlin. Some properties of a random walk on a comb structure. Physica A 134 (1986), 474-482.
Endre Csáki, Miklós Csörgö, Antonia Feldes, and Pál Révész "Strong Limit Theorems for a Simple Random Walk on the 2-Dimensional Comb," Electronic Journal of Probability 14(none), 2371-2390, (2009). https://doi.org/10.1214/EJP.v14-710
Accepted: 1 November 2009; Published: 2009
Vol.14 • 2009
Back to Top