Open Access
2008 Another look at the moment method for large dimensional random matrices
Arup Bose, Arnab Sen
Author Affiliations +
Electron. J. Probab. 13: 588-628 (2008). DOI: 10.1214/EJP.v13-501
Abstract

The methods to establish the limiting spectral distribution (LSD) of large dimensional random matrices includes the&nbsp; well known moment method which invokes the trace formula. Its success has been demonstrated in several types of matrices such as the Wigner matrix and the sample variance covariance matrix. In a recent article Bryc, Dembo and Jiang (2006) establish the LSD for the random Toeplitz and Hankel matrices using the moment method.&nbsp; They perform the necessary counting of terms in the trace by splitting the relevant sets into equivalent classes and relating the limits of the counts to certain volume calculations.<br> <br> We build on their work and present a unified approach. This helps provide&nbsp; relatively short and easy proofs for the LSD of common matrices while at the same time providing insight into the nature of different LSD and their interrelations. By extending these methods we are also able to deal with matrices with appropriate dependent entries.

References

1.

Arnold, L. (1967). On the asymptotic distribution of the eigenvalues of random matrices. J. Math. Anal. Appl., 20, 262-268. 0246.60029 10.1016/0022-247X(67)90089-3Arnold, L. (1967). On the asymptotic distribution of the eigenvalues of random matrices. J. Math. Anal. Appl., 20, 262-268. 0246.60029 10.1016/0022-247X(67)90089-3

2.

Bai, Z. D. (1999) Methodologies in spectral analysis of large dimensional random matrices, a review. Statistica Sinica, 9, 611-677 (with discussions). MR1711663 0949.60077Bai, Z. D. (1999) Methodologies in spectral analysis of large dimensional random matrices, a review. Statistica Sinica, 9, 611-677 (with discussions). MR1711663 0949.60077

3.

Bai, Z. D. and Silverstein, J. (2006). Spectral analysis of large dimensional random matrices. Science Press, Beijing. 1196.60002Bai, Z. D. and Silverstein, J. (2006). Spectral analysis of large dimensional random matrices. Science Press, Beijing. 1196.60002

4.

Bai, Z. D. and Yin, Y. Q. (1988). Convergence to the semicircle law. Ann. Probab., 16, no. 2, 863-875. 0648.60030 10.1214/aop/1176991792 euclid.aop/1176991792Bai, Z. D. and Yin, Y. Q. (1988). Convergence to the semicircle law. Ann. Probab., 16, no. 2, 863-875. 0648.60030 10.1214/aop/1176991792 euclid.aop/1176991792

5.

Bhatia, R. (1997). Matrix Analysis. Springer, New York.Bhatia, R. (1997). Matrix Analysis. Springer, New York.

6.

Bose, A. and Mitra, J. (2002). Limiting spectral distribution of a special circulant. Stat. Probab. Letters, 60, 1, 111-120. 1014.60038 10.1016/S0167-7152(02)00289-4Bose, A. and Mitra, J. (2002). Limiting spectral distribution of a special circulant. Stat. Probab. Letters, 60, 1, 111-120. 1014.60038 10.1016/S0167-7152(02)00289-4

7.

Bryc, W., Dembo, A. and Jiang, T. (2006). Spectral measure of large random Hankel, Markov and Toeplitz matrices. Ann. Probab., 34, no. 1, 1-38. MR2206341 1094.15009 10.1214/009117905000000495 euclid.aop/1140191531Bryc, W., Dembo, A. and Jiang, T. (2006). Spectral measure of large random Hankel, Markov and Toeplitz matrices. Ann. Probab., 34, no. 1, 1-38. MR2206341 1094.15009 10.1214/009117905000000495 euclid.aop/1140191531

8.

Chatterjee, S. (2005) A simple invariance theorem. Available at http://arxiv.org/abs/math.PR/0508213.Chatterjee, S. (2005) A simple invariance theorem. Available at http://arxiv.org/abs/math.PR/0508213.

9.

Chow, Y. S. and Teicher, H. (1997). Probability theory: Independence, interchangeability, martingales. Third edition, Springer-Verlag, New York. 0891.60002Chow, Y. S. and Teicher, H. (1997). Probability theory: Independence, interchangeability, martingales. Third edition, Springer-Verlag, New York. 0891.60002

10.

Feller, W. (1966). An Introduction to Probability Theory and Its Application. Vol. 2, Wiley, New York.Feller, W. (1966). An Introduction to Probability Theory and Its Application. Vol. 2, Wiley, New York.

11.

Grenander, U. (1963). Probabilities on algebraic structures. John Wiley & Sons, Inc., New York-London; Almqvist & Wiksell, Stockholm-Göteborg-Uppsala. MR0206994 0131.34804Grenander, U. (1963). Probabilities on algebraic structures. John Wiley & Sons, Inc., New York-London; Almqvist & Wiksell, Stockholm-Göteborg-Uppsala. MR0206994 0131.34804

12.

Hammond, C. and Miller, S. J. (2005) Distribution of eigenvalues for the ensemble of real symmetric Toeplitz matrices. J. Theoret. Probab. 18, no. 3, 537-566. 1086.15024 10.1007/s10959-005-3518-5Hammond, C. and Miller, S. J. (2005) Distribution of eigenvalues for the ensemble of real symmetric Toeplitz matrices. J. Theoret. Probab. 18, no. 3, 537-566. 1086.15024 10.1007/s10959-005-3518-5

13.

Jonsson, D. (1982). Some limit theorems for the eigenvalues of a sample covariance matrix. J. Multivariate Anal. 12, no. 1, 1-38. MR650926 0491.62021 10.1016/0047-259X(82)90080-XJonsson, D. (1982). Some limit theorems for the eigenvalues of a sample covariance matrix. J. Multivariate Anal. 12, no. 1, 1-38. MR650926 0491.62021 10.1016/0047-259X(82)90080-X

14.

Marčenko, V. A. and Pastur, L. A. (1967). Distribution of eigenvalues in certain sets of random matrices, (Russian) Mat. Sb. (N.S.), 72 (114), 507-536.Marčenko, V. A. and Pastur, L. A. (1967). Distribution of eigenvalues in certain sets of random matrices, (Russian) Mat. Sb. (N.S.), 72 (114), 507-536.

15.

Massey, A., Miller, S. J. and and Sinsheimer, J. (2007). Distribution of eigenvalues of real symmetric palindromic Toeplitz matrices and circulant matrices. J. Theoret. Probab. 20, 3, 637-662. 1126.15030 10.1007/s10959-007-0078-xMassey, A., Miller, S. J. and and Sinsheimer, J. (2007). Distribution of eigenvalues of real symmetric palindromic Toeplitz matrices and circulant matrices. J. Theoret. Probab. 20, 3, 637-662. 1126.15030 10.1007/s10959-007-0078-x

16.

Pastur, L. (1972). The spectrum of random matrices. (Russian) Teoret. Mat. Fiz. 10 no. 1, 102-112.Pastur, L. (1972). The spectrum of random matrices. (Russian) Teoret. Mat. Fiz. 10 no. 1, 102-112.

17.

Phillips P., Solo V. (1992) Asymptotics for linear processes, Ann. Stat. (2), 20, 971-1001. 0759.60021 10.1214/aos/1176348666 euclid.aos/1176348666Phillips P., Solo V. (1992) Asymptotics for linear processes, Ann. Stat. (2), 20, 971-1001. 0759.60021 10.1214/aos/1176348666 euclid.aos/1176348666

18.

Sen, A. (2006). Large dimensional random matrices. M. Stat. Project report., May 2006. Indian Statistical Institute, Kolkata.Sen, A. (2006). Large dimensional random matrices. M. Stat. Project report., May 2006. Indian Statistical Institute, Kolkata.

19.

Wachter, K.W. (1978). The strong limits of random matrix spectra for sample matrices of independent elements. Ann. Probab. 6, 1-18. 0374.60039 10.1214/aop/1176995607 euclid.aop/1176995607Wachter, K.W. (1978). The strong limits of random matrix spectra for sample matrices of independent elements. Ann. Probab. 6, 1-18. 0374.60039 10.1214/aop/1176995607 euclid.aop/1176995607

20.

Wigner, E. P. (1955). Characteristic vectors of bordered matrices with infinite dimensions. Ann. of Math., (2), 62, 548-564. 0067.08403 10.2307/1970079Wigner, E. P. (1955). Characteristic vectors of bordered matrices with infinite dimensions. Ann. of Math., (2), 62, 548-564. 0067.08403 10.2307/1970079

21.

Wigner, E. P. (1958). On the distribution of the roots of certain symmetric matrices. Ann. of Math., (2), 67, 325-327. 0085.13203 10.2307/1970008Wigner, E. P. (1958). On the distribution of the roots of certain symmetric matrices. Ann. of Math., (2), 67, 325-327. 0085.13203 10.2307/1970008

22.

Yin, Y. Q. (1986). Limiting spectral distribution for a class of random matrices. J. Multivariate Anal., 20, no. 1, 50-68.Yin, Y. Q. (1986). Limiting spectral distribution for a class of random matrices. J. Multivariate Anal., 20, no. 1, 50-68.

23.

Yin, Y. Q. and Krishnaiah, P. R. (1985). Limit theorem for the eigenvalues of the sample covariance matrix when the underlying distribution is isotropic. Theory Probab. Appl., 30, no. 4, 810-816.  0584.62029Yin, Y. Q. and Krishnaiah, P. R. (1985). Limit theorem for the eigenvalues of the sample covariance matrix when the underlying distribution is isotropic. Theory Probab. Appl., 30, no. 4, 810-816.  0584.62029
Arup Bose and Arnab Sen "Another look at the moment method for large dimensional random matrices," Electronic Journal of Probability 13(none), 588-628, (2008). https://doi.org/10.1214/EJP.v13-501
Accepted: 12 April 2008; Published: 2008
Vol.13 • 2008
Back to Top