Abstract
We prove the following results about the images and multiple points of an $N$-parameter, $d$-dimensional Brownian sheet $B =\{B(t)\}_{t \in R_+^N}$: (1) If $\text{dim}_H F \leq d/2$, then $B(F)$ is almost surely a Salem set. (2) If $N \leq d/2$, then with probability one $\text{dim}_H B(F) = 2 \text{dim} F$ for all Borel sets of $R_+^N$, where "$\text{dim}_H$" could be everywhere replaced by the "Hausdorff," "packing," "upper Minkowski," or "lower Minkowski dimension." (3) Let $M_k$ be the set of $k$-multiple points of $B$. If $N \leq d/2$ and $ Nk > (k-1)d/2$, then $\text{dim}_H M_k = \text{dim}_p M_k = 2 Nk - (k-1)d$, a.s. The Hausdorff dimension aspect of (2) was proved earlier; see Mountford (1989) and Lin (1999). The latter references use two different methods; ours of (2) are more elementary, and reminiscent of the earlier arguments of Monrad and Pitt (1987) that were designed for studying fractional Brownian motion. If $N>d/2$ then (2) fails to hold. In that case, we establish uniform-dimensional properties for the $(N,1)$-Brownian sheet that extend the results of Kaufman (1989) for 1-dimensional Brownian motion. Our innovation is in our use of the sectorial local nondeterminism of the Brownian sheet (Khoshnevisan and Xiao, 2004).
Citation
Yimin Xiao. Davar Khoshnevisan. Dongsheng Wu. "Sectorial Local Non-Determinism and the Geometry of the Brownian Sheet." Electron. J. Probab. 11 817 - 843, 2006. https://doi.org/10.1214/EJP.v11-353
Information