Open Access
2003 Excited Random Walk
Itai Benjamini, David Wilson
Author Affiliations +
Electron. Commun. Probab. 8: 86-92 (2003). DOI: 10.1214/ECP.v8-1072

Abstract

A random walk on $\mathbb{Z}^d$ is excited if the first time it visits a vertex there is a bias in one direction, but on subsequent visits to that vertex the walker picks a neighbor uniformly at random. We show that excited random walk on $\mathbb{Z}^d$ is transient iff $d \gt 1$.

Citation

Download Citation

Itai Benjamini. David Wilson. "Excited Random Walk." Electron. Commun. Probab. 8 86 - 92, 2003. https://doi.org/10.1214/ECP.v8-1072

Information

Accepted: 24 June 2003; Published: 2003
First available in Project Euclid: 18 May 2016

zbMATH: 1060.60043
MathSciNet: MR1987097
Digital Object Identifier: 10.1214/ECP.v8-1072

Subjects:
Primary: 60J10

Keywords: Perturbed random walk , transience

Back to Top