Open Access
2002 Geodesics and Recurrence of Random Walks in Disordered Systems
Daniel Boivin, Jean-Marc Derrien
Author Affiliations +
Electron. Commun. Probab. 7: 101-115 (2002). DOI: 10.1214/ECP.v7-1052

Abstract

In a first-passage percolation model on the square lattice $Z^2$, if the passage times are independent then the number of geodesics is either $0$ or $+\infty$. If the passage times are stationary, ergodic and have a finite moment of order $\alpha \gt 1/2$, then the number of geodesics is either $0$ or $+\infty$. We construct a model with stationary passage times such that $E\lbrack t(e)^\alpha\rbrack \lt \infty$, for every $0 \lt \alpha \lt 1/2$, and with a unique geodesic. The recurrence/transience properties of reversible random walks in a random environment with stationary conductances $( a(e);e$ is an edge of $\mathbb{Z}^2)$ are considered.

Citation

Download Citation

Daniel Boivin. Jean-Marc Derrien. "Geodesics and Recurrence of Random Walks in Disordered Systems." Electron. Commun. Probab. 7 101 - 115, 2002. https://doi.org/10.1214/ECP.v7-1052

Information

Accepted: 15 May 2002; Published: 2002
First available in Project Euclid: 16 May 2016

zbMATH: 1013.60072
MathSciNet: MR1917544
Digital Object Identifier: 10.1214/ECP.v7-1052

Subjects:
Primary: 60K35
Secondary: 60G50 , 60K37

Keywords: Geodesics in first-passage percolation model , Random environment with stationary conductances , Recurrence and transience , Reversible random walks on$Z^2$

Back to Top