Translator Disclaimer
2019 Kemeny’s constant for one-dimensional diffusions
Ross Pinsky
Electron. Commun. Probab. 24: 1-5 (2019). DOI: 10.1214/19-ECP244


Let $X(\cdot )$ be a non-degenerate, positive recurrent one-dimensional diffusion process on $\mathbb{R} $ with invariant probability density $\mu (x)$, and let $\tau _{y}=\inf \{t\ge 0: X(t)=y\}$ denote the first hitting time of $y$. Let $\mathcal{X} $ be a random variable independent of the diffusion process $X(\cdot )$ and distributed according to the process’s invariant probability measure $\mu (x)dx$. Denote by $\mathcal{E} ^{\mu }$ the expectation with respect to $\mathcal{X} $. Consider the expression \[ \mathcal{E} ^{\mu }E_{x}\tau _{\mathcal{X} }=\int _{-\infty }^{\infty }(E_{x}\tau _{y})\mu (y)dy, \ x\in \mathbb{R} . \] In words, this expression is the expected hitting time of the diffusion starting from $x$ of a point chosen randomly according to the diffusion’s invariant distribution. We show that this expression is constant in $x$, and that it is finite if and only if $\pm \infty $ are entrance boundaries for the diffusion. This result generalizes to diffusion processes the corresponding result in the setting of finite Markov chains, where the constant value is known as Kemeny’s constant.


Download Citation

Ross Pinsky. "Kemeny’s constant for one-dimensional diffusions." Electron. Commun. Probab. 24 1 - 5, 2019.


Received: 7 April 2019; Accepted: 16 May 2019; Published: 2019
First available in Project Euclid: 22 June 2019

zbMATH: 07088977
MathSciNet: MR3978685
Digital Object Identifier: 10.1214/19-ECP244

Primary: 60J50, 60J60


Back to Top