Abstract
We give a heat flow derivation for the Godbillon Vey class. In particular we prove that if $(M,g)$ is a compact Riemannian manifold with a codimension 1 foliation $\mathcal{F} $, defined by an integrable 1-form $\omega $ such that $||\omega ||=1$, then the Godbillon-Vey class can be written as $[-\mathcal{A} \omega \wedge d\omega ]_{dR}$ for an operator $\mathcal{A} :\Omega ^*(M)\rightarrow \Omega ^*(M)$ induced by the heat flow.
Citation
Diego S. Ledesma. "A heat flow approach to the Godbillon-Vey class." Electron. Commun. Probab. 22 1 - 6, 2017. https://doi.org/10.1214/16-ECP3836
Information