Open Access
2015 A note on the extremal process of the supercritical Gaussian Free Field
Alberto Chiarini, Alessandra Cipriani, Rajat Hazra
Author Affiliations +
Electron. Commun. Probab. 20: 1-10 (2015). DOI: 10.1214/ECP.v20-4332

Abstract

We consider both the infinite-volume discrete Gaussian Free Field (DGFF) and the DGFF with zero boundary conditions outside a finite box in dimension larger or equal to 3. We show that the associated extremal process converges to a Poisson point process. The result follows from an application of the Stein-Chen method from Arratia et al. (1989).

Citation

Download Citation

Alberto Chiarini. Alessandra Cipriani. Rajat Hazra. "A note on the extremal process of the supercritical Gaussian Free Field." Electron. Commun. Probab. 20 1 - 10, 2015. https://doi.org/10.1214/ECP.v20-4332

Information

Accepted: 15 October 2015; Published: 2015
First available in Project Euclid: 7 June 2016

zbMATH: 1329.60147
MathSciNet: MR3417446
Digital Object Identifier: 10.1214/ECP.v20-4332

Subjects:
Primary: 60G15
Secondary: 60G30 , 60G55 , 60G57 , 60G70 , 82B41

Keywords: discrete Gaussian free field , Extremal process , Poisson process approximation , Stein-Chen method

Back to Top