Translator Disclaimer
2013 Mixing time bounds for oriented kinetically constrained spin models
Paul Chleboun, Fabio Martinelli
Author Affiliations +
Electron. Commun. Probab. 18: 1-9 (2013). DOI: 10.1214/ECP.v18-2516

Abstract

We analyze the mixing time of a class of oriented kinetically constrained spin models (KCMs) on a d-dimensional lattice of n sites. A typical example is the North-East model, a 0-1 spin system on the two-dimensional integer lattice that evolves according to the following rule: whenever a site’s southerly and westerly nearest neighbours have spin 0, with rate one it resets its own spin by tossing a p-coin, at all other times its spin remains frozen. Such models are very popular in statistical physics because, in spite of their simplicity, they display some of the key features of the dynamics of real glasses. We prove that the mixing time is O(n log n) whenever the relaxation time is O(1). Our study was motivated by the “shape” conjecture put forward by G. Kordzakhia and S.P. Lalley.

Citation

Download Citation

Paul Chleboun. Fabio Martinelli. "Mixing time bounds for oriented kinetically constrained spin models." Electron. Commun. Probab. 18 1 - 9, 2013. https://doi.org/10.1214/ECP.v18-2516

Information

Accepted: 12 July 2013; Published: 2013
First available in Project Euclid: 7 June 2016

zbMATH: 1329.60332
MathSciNet: MR3084571
Digital Object Identifier: 10.1214/ECP.v18-2516

Subjects:
Primary: 60J10
Secondary: 60J27, 60J28

JOURNAL ARTICLE
9 PAGES


SHARE
Back to Top