Translator Disclaimer
2013 Avoidance Coupling
Omer Angel, Alexander Holroyd, James Martin, Peter Winkler, David Wilson
Author Affiliations +
Electron. Commun. Probab. 18: 1-13 (2013). DOI: 10.1214/ECP.v18-2275

Abstract

We examine the question of whether a collection of random walks on a graph can be coupled so that they never collide. In particular, we show that on the complete graph on n vertices, with or without loops, there is a Markovian coupling keeping apart Omega(n/log n) random walks, taking turns to move in discrete time.

Citation

Download Citation

Omer Angel. Alexander Holroyd. James Martin. Peter Winkler. David Wilson. "Avoidance Coupling." Electron. Commun. Probab. 18 1 - 13, 2013. https://doi.org/10.1214/ECP.v18-2275

Information

Accepted: 9 July 2013; Published: 2013
First available in Project Euclid: 7 June 2016

zbMATH: 1300.60082
MathSciNet: MR3084569
Digital Object Identifier: 10.1214/ECP.v18-2275

Subjects:
Primary: 60J10

Keywords: coloring, coupling

JOURNAL ARTICLE
13 PAGES


SHARE
Back to Top