Abstract
In this paper we derive the exact tail asymptotic behaviour of $S_\infty=\sum_{i=1}^\infty \lambda_i X_iY_i$, where $\lambda_i, i\ge 1,$ are non-negative square summable deflators (weights) and $X_i,Y_i, i\ge1,$ are independent standard Gaussian random variables. Further, we consider the tail asymptotics of $S_{\infty;p}=\sum_{i=1}^\infty\lambda_i X_i|Y_i|^p, p> 1$, and also discuss the influence on the asymptotic results when $\lambda_i$'s are independent random variables.
Citation
Enkelejd Hashorva. Lanpeng Ji. Zhongquan Tan. "On the infinite sums of deflated Gaussian products." Electron. Commun. Probab. 17 1 - 8, 2012. https://doi.org/10.1214/ECP.v17-1921
Information