Abstract
Let $(X_{i}, \mathcal{F}_{i})_{i\geq 1}$ be a sequence of supermartingale differences and let $S_k=\sum_{i=1}^k X_i$. We give an exponential moment condition under which $\mathbb{P}( \max_{1\leq k \leq n} S_k \geq n)=O(\exp\{-C_1 n^{\alpha}\}),$ $n\rightarrow \infty, $ where $\alpha \in $ is given and $C_{1}>0$ is a constant. We also show that the power $\alpha$ is optimal under the given moment condition.
Citation
Xiequan Fan. Ion Grama. Quansheng Liu. "Large deviation exponential inequalities for supermartingales." Electron. Commun. Probab. 17 1 - 8, 2012. https://doi.org/10.1214/ECP.v17-2318
Information