1 December 2023 Log-concavity of matroid h-vectors and mixed Eulerian numbers
Andrew Berget, Hunter Spink, Dennis Tseng
Author Affiliations +
Duke Math. J. 172(18): 3475-3520 (1 December 2023). DOI: 10.1215/00127094-2023-0021

Abstract

For any matroid M, we compute the Tutte polynomial TM(x,y) using the mixed intersection numbers of certain classes in the combinatorial Chow ring A(M) arising from hypersimplices. Using the mixed Hodge–Riemann relations, we deduce a strengthening of the log-concavity of the h-vector of a matroid complex, improving on an old conjecture of Dawson.

Citation

Download Citation

Andrew Berget. Hunter Spink. Dennis Tseng. "Log-concavity of matroid h-vectors and mixed Eulerian numbers." Duke Math. J. 172 (18) 3475 - 3520, 1 December 2023. https://doi.org/10.1215/00127094-2023-0021

Information

Received: 8 April 2021; Revised: 5 January 2023; Published: 1 December 2023
First available in Project Euclid: 20 February 2024

MathSciNet: MR4718433
zbMATH: 1537.52019
Digital Object Identifier: 10.1215/00127094-2023-0021

Subjects:
Primary: 52B40
Secondary: 14M15 , 14M25

Keywords: Hodge theory , Log-concavity , matroid , Tropical geometry

Rights: Copyright © 2023 Duke University Press

Vol.172 • No. 18 • 1 December 2023
Back to Top