1 April 2022 Singularity of sparse Bernoulli matrices
Alexander E. Litvak, Konstantin E. Tikhomirov
Author Affiliations +
Duke Math. J. 171(5): 1135-1233 (1 April 2022). DOI: 10.1215/00127094-2021-0056

Abstract

Let Mn be an n×n random matrix with independent and identically distributed Bernoulli(p) entries. We show that there is a universal constant C1 such that, whenever p and n satisfy ClognnpC1,

P{Mn is singular}=(1+on(1))P{Mn contains a zero row or column}=(2+on(1))n(1p)n,

where on(1) denotes a quantity which converges to zero as n. We provide the corresponding upper and lower bounds on the smallest singular value of Mn as well.

Citation

Download Citation

Alexander E. Litvak. Konstantin E. Tikhomirov. "Singularity of sparse Bernoulli matrices." Duke Math. J. 171 (5) 1135 - 1233, 1 April 2022. https://doi.org/10.1215/00127094-2021-0056

Information

Received: 4 July 2020; Revised: 23 March 2021; Published: 1 April 2022
First available in Project Euclid: 21 March 2022

MathSciNet: MR4402560
zbMATH: 1495.15049
Digital Object Identifier: 10.1215/00127094-2021-0056

Subjects:
Primary: 60B20
Secondary: 15B52 , 46B06 , 60C05

Keywords: Bernoulli matrices , invertibility , Littlewood–Offord theory , smallest singular value , Sparse matrices

Rights: Copyright © 2022 Duke University Press

Vol.171 • No. 5 • 1 April 2022
Back to Top