1 November 2006 Global wellposedness of KdV in H1(T,R)
T. Kappeler, P. Topalov
Author Affiliations +
Duke Math. J. 135(2): 327-360 (1 November 2006). DOI: 10.1215/S0012-7094-06-13524-X

Abstract

By the inverse method we show that the Korteweg–de Vries equation (KdV) tv(x,t)=-x3v(x,t)+6v(x,t)xv(x,t) (xT,tR) is globally (in time) wellposed in the Sobolev space of distributions Hβ(T,R) for any β1

Citation

Download Citation

T. Kappeler. P. Topalov. "Global wellposedness of KdV in H1(T,R)." Duke Math. J. 135 (2) 327 - 360, 1 November 2006. https://doi.org/10.1215/S0012-7094-06-13524-X

Information

Published: 1 November 2006
First available in Project Euclid: 17 October 2006

zbMATH: 1106.35081
MathSciNet: MR2267286
Digital Object Identifier: 10.1215/S0012-7094-06-13524-X

Subjects:
Primary: 35D05 , 35G25 , 35Q53

Rights: Copyright © 2006 Duke University Press

Vol.135 • No. 2 • 1 November 2006
Back to Top