01 December 05 Representation theory of superconformal algebras and the Kac-Roan-Wakimoto conjecture
Tomoyuki Arakawa
Author Affiliations +
Duke Math. J. 130(3): 435-478 (01 December 05). DOI: 10.1215/S0012-7094-05-13032-0

Abstract

We study the representation theory of the superconformal algebra Wk(g,fθ) associated with a minimal gradation of g. Here, g is a simple finite-dimensional Lie superalgebra with a nondegenerate, even supersymmetric invariant bilinear form. Thus, Wk(g,fθ) can be one of the well-known superconformal algebras including the Virasoro algebra, the Bershadsky-Polyakov algebra, the Neveu-Schwarz algebra, the Bershadsky-Knizhnik algebras, the N=2 superconformal algebra, the N=4 superconformal algebra, the N=3 superconformal algebra, and the big N=4 superconformal algebra. We prove the conjecture of V. G. Kac, S.-S. Roan, and M. Wakimoto [17, Conjecture 3.1B] for Wk(g,fθ). In fact, we show that any irreducible highest-weight character of Wk(g,fθ) at any level k is determined by the corresponding irreducible highest-weight character of the Kac-Moody affinization of g

Citation

Download Citation

Tomoyuki Arakawa. "Representation theory of superconformal algebras and the Kac-Roan-Wakimoto conjecture." Duke Math. J. 130 (3) 435 - 478, 01 December 05. https://doi.org/10.1215/S0012-7094-05-13032-0

Information

Published: 01 December 05
First available in Project Euclid: 1 December 2005

zbMATH: 1112.17026
MathSciNet: MR2184567
Digital Object Identifier: 10.1215/S0012-7094-05-13032-0

Subjects:
Primary: 17B68
Secondary: 17B10 , 17B55 , 17B69

Rights: Copyright © 2005 Duke University Press

Vol.130 • No. 3 • 01 December 05
Back to Top