15 February 2003 Meromorphic continuation of the spectral shift function
Vincent Bruneau, Vesselin Petkov
Duke Math. J. 116(3): 389-430 (15 February 2003). DOI: 10.1215/S0012-7094-03-11631-2

Abstract

We obtain a representation of the derivative of the spectral shift function $\xi(\lambda,h)$ in the framework of semiclassical "black box" perturbations. Our representation implies a meromorphic continuation of $\xi(\lambda,h)$ involving the semiclassical resonances. Moreover, we obtain a Weyl-type asymptotics of the spectral shift function, as well as a Breit-Wigner approximation in an interval $(\lambda -\delta,\lambda+\delta), 0<\delta<\epsilon h$.

Citation

Download Citation

Vincent Bruneau. Vesselin Petkov. "Meromorphic continuation of the spectral shift function." Duke Math. J. 116 (3) 389 - 430, 15 February 2003. https://doi.org/10.1215/S0012-7094-03-11631-2

Information

Published: 15 February 2003
First available in Project Euclid: 26 May 2004

zbMATH: 1033.35081
MathSciNet: MR1958093
Digital Object Identifier: 10.1215/S0012-7094-03-11631-2

Subjects:
Primary: 35P25
Secondary: 47A40 , 47A55 , 47F05

Rights: Copyright © 2003 Duke University Press

Vol.116 • No. 3 • 15 February 2003
Back to Top