Abstract
A classic solution to the Cauchy problem for the damped Boussinesq equation $u_{tt}-2Bu_{txx}=-\alpha u_{xxxx}+u_{xx}-\beta(u^2)_{xx}$, $x\in\Bbb R^1$, $t>0$, $\alpha, B=\text{const}>0$, $\beta=\text{const}\in\Bbb R^1$, with small initial data is constructed by means of the application of both the spectral and perturbation theories. Large time asymptotics of this solution are obtained. Its main term accounts for two solitons traveling in opposite directions. Each of them is governed by the Burgers equation with a transfer.
Citation
Vladimir Varlamov. "On the Cauchy problem for the damped Boussinesq equation." Differential Integral Equations 9 (3) 619 - 634, 1996. https://doi.org/10.57262/die/1367969976
Information